p-Poincaré inequality versus ∞-Poincaré inequality: some counterexamples

Springer Science and Business Media LLC - Tập 271 Số 1-2 - Trang 447-467 - 2012
Estíbalitz Durand-Cartagena1, Nageswari Shanmugalingam2, Alex Williams3
1Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
2Department of Mathematical Sciences, University of Cincinnati, Cincinnati, USA
3Department of Mathematics, Texas Tech University, Lubbock, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahlfors L., Beurling A.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125–142 (1956)

Björn J., Shanmugalingam N.: Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces. J. Math. Anal. Appl. 332, 190–208 (2007)

Bourdon, M., Pajot, H.: Quasi-conformal geometry and hyperbolic geometry. (English summary) Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1–17. Springer, Berlin (2002)

Björn J., Buckley S., Keith S.: Admissible measures in one dimension. Proc. Am. Math. Soc. 134(3), 703–705 (2006) (electronic)

Björn, A., Björn, J.: Nonlinear potential theory on metric spaces, EMS Tracts Mathematics, European Math. Soc., Zurich (to appear)

Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics. vol. 33. American Mathematical Society, Providence (2001)

Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

Durand-Cartagena E., Jaramillo J.A.: Pointwise Lipschitz functions on metric spaces. J. Math. Anal. Appl. 363, 525–548 (2010)

Durand-Cartagena, E., Jaramillo, J.A., Shanmugalingam, N.: The ∞-Poincaré inequality in metric measure spaces. Mich. Math. J. 60 (2011, to appear)

Falconer K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, New York (2003)

Folland, G.B.: Real Analysis, Modern Techniques and Their Applications. Pure and Applied Mathematics. Wiley, New York (1999)

Fukaya K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87(3), 517–547 (1987)

Gromov, M.: Structures métriques pour les variétiés riemanniennes. In: Lafontaine, J., Pansu, P. (ed.) Textes Mathématiques 1. Cedic/Nathan, Paris (1981)

Hajłasz P., Koskela P.: Sobolev met Poincaré. Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x+101 (2000)

Heinonen J.: Lectures on Analysis on Metric Spaces. Springer, Berlin (2001)

Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Unabridged republication of the 1993 original, pp. xii+404. Dover Publications Inc., Mineola (2006)

Keith S.: A differentiable structure for metric measure spaces. Adv. Math. 183, 271–315 (2004)

Keith, S.: A differentiable structure for metric measure spaces, Dissertation. University of Michigan (2002)

Keith S.: Modulus and the Poincaré inequality on metric measure spaces. Math. Z. 245, 255–292 (2003)

Korte R.: Geometric implications of the Poincaré inequality. Results Math. 50(1–2), 93–107 (2007)

Koskela P., McManus P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131(1), 1–17 (1998)

Keith S., Zhong X.: The Poincaré inequality is an open ended condition. Ann. Math. 167(2), 575–599 (2008)

Mattila P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and rectifiability, Cambridge studies in Advance Mathematics, vol. 44. Cambridge University Press, New York (1995)

Semmes S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math., New Series 2(2), 155–295 (1996)

Semmes S.: Some Novel Types of Fractal Geometry. Oxford Science Publications, New York (2001)

Shanmugalingam N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 243–279 (2000)

Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Ph.D. thesis, University of Michigan http://www.math.uc.edu/~nages/papers.html (1999)

Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)

Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229, Springer, Berlin (1971)

Zygmund, A.: Trigonometric series. Vols. I, II, 2nd edn., vol. I, pp. xii+383; vol. II, pp. vii+354. Cambridge University Press, New York (1959)