p-Energy and p-Harmonic Functions on Sierpinski Gasket Type Fractals

Springer Science and Business Media LLC - Tập 20 - Trang 125-148 - 2004
P. Edward Herman1, Roberto Peirone2, Robert S. Strichartz3
1Mathematics Department, University of Chicago, Chicago, USA (e-mail
2Dipartimento di Matematica, Universita di Roma “Tor Vergata”, Roma, Italy (e-mail
3Mathematics Department, Cornell University, Ithaca, USA (e-mail

Tóm tắt

We show that it is possible to define a notion of p-energy for functions defined on a class of fractals including the Sierpinski gasket (SG) for any value of p, 1

Tài liệu tham khảo

Jonsson, A.: ‘Brownian motion on fractals and function spaces’, Math. Z. 222 (1996), 495–504. Kigami, J.: Analysis on Fractals, Cambridge Univ. Press, 2001. Kigami, J., Strichartz R. and Walker, K.: ‘Constructing a Laplacian on the diamond fractal’, Experiment. Math. 10 (2001), 437–448. Lindstrom, T.: ‘Brownian motion on nested fractals’, Mem. Amer. Math. Soc. 420 (1989). Metz, V.: ‘Hilbert projective metric on cones of Dirichlet forms’, J. Funct. Anal. 127 (1995), 438–455. Metz, V.: ‘Renormalization contracts on nested fractals’, J. Reine Angew. Math. 480 (1996), 161–175. Peirone, R.: ‘Convergence and uniqueness problems for Dirichlet forms on fractals’, Boll. Un. Mat. Ital. (8) 3-B (2000), 431–460. Sabot, C.: ‘Existence and uniqueness of diffusions on finitely ramified self-similar fractals’, Ann. Sci. École Norm. Sup. (4) 30 (1997), 605–673. Strichartz, R.: ‘Function spaces on fractals’, J. Funct. Anal. (to appear). Strichartz, R. and Wong, C.: ‘The p-Laplacian on the Sierpinski gasket’, in preparation.