nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

Nature Methods - Tập 18 Số 2 - Trang 203-211 - 2021
Fabian Isensee1, Paul F. Jaeger1, Simon Kohl1, Jens Petersen1, Klaus H. Maier‐Hein1
1Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Falk, T. et al. U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

Hollon, T. C. et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. 26, 52–58 (2020).

Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014).

Nestle, U. et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med. 46, 1342–1348 (2005).

De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).

Bernard, O. et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37, 2514–2525 (2018).

Nikolov, S. et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. Preprint at https://arxiv.org/abs/1809.04430 (2018).

Kickingereder, P. et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20, 728–740 (2019).

Maier-Hein, L. et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9, 5217 (2018).

Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

LeCun, Y. 1.1 deep learning hardware: past, present, and future. In 2019 IEEE International Solid-State Circuits Conference 12–19 (IEEE, 2019).

Hutter, F., Kotthoff, L. & Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges. (Springer Nature, 2019).

Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).

Simpson, A. L. et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. Preprint at https://arxiv.org/abs/1902.09063 (2019).

Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In MICCAI (eds. Navab, N. et al) 234–241 (2015).

Landman, B. et al. MICCAI multi-atlas labeling beyond the cranial vault—workshop and challenge. https://doi.org/10.7303/syn3193805 (2015).

Litjens, G. et al. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18, 359–373 (2014).

Bilic, P. et al. The liver tumor segmentation benchmark (LiTS). Preprint at https://arxiv.org/abs/1901.04056 (2019).

Carass, A. et al. Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148, 77–102 (2017).

Kavur, A. E. et al. CHAOS challenge—combined (CT–MR) healthy abdominal organ segmentation. Preprint at https://arxiv.org/abs/2001.06535 (2020).

Heller, N. et al. The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. Preprint at https://arxiv.org/abs/1904.00445 (2019).

Lambert, Z., Petitjean, C., Dubray, B. & Ruan, S. SegTHOR: segmentation of thoracic organs at risk in CT images. Preprint at https://arxiv.org/abs/1912.05950 (2019).

Maška, M. et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617 (2014).

Ulman, V. et al. An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141–1152 (2017).

Heller, N. et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. In Medical Image Analysis vol. 67 (2021).

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-net: learning dense volumetric segmentation from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds. Ourselin, S. et al.) 424–432 (Springer, 2016).

Milletari, F., Navab, N. & Ahmadi, S.-A. V-net: fully convolutional neural networks for volumetric medical image segmentation. In International Conference on 3D Vision (3DV) 565–571 (IEEE, 2016).

He, K., Zhang, Z., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

Jégou, S., Drozdzal, M., Vazquez, D., Romero, A. & Bengio, Y. The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 11–19 (IEEE, 2017).

Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4700–4708 (IEEE, 2017).

Oktay, O. et al. Attention U-net: learning where to look for the pancreas. Preprint at https://arxiv.org/abs/1804.03999 (2018).

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2017).

McKinley, R., Meier, R. & Wiest, R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In International MICCAI Brain Lesion Workshop (eds. Crimi, A. et al.) 456–465 (Springer, 2018).

Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J. & Saalfeld, S. Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete Drosophila brain. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds. Frangi, A.F. et al.) 317–325 (Springer, 2018).

Nolden, M. et al. The Medical Imaging Interaction Toolkit: challenges and advances. Int. J. Comput. Assist. Radiol. Surg. 8, 607–620 (2013).

Castilla, C., Maška, M., Sorokin, D. V., Meijering, E. & Ortiz-de-Solórzano, C. 3-D quantification of filopodia in motile cancer cells. IEEE Trans. Med. Imaging 38, 862–872 (2018).

Sorokin, D. V. et al. FiloGen: a model-based generator of synthetic 3-D time-lapse sequences of single motile cells with growing and branching filopodia. IEEE Trans. Med. Imaging 37, 2630–2641 (2018).

Menze, B. H. et al. The Multimodal Brain Tumor Image Segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2014).

Svoboda, D. & Ulman, V. MitoGen: a framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans. Med. Imaging 36, 310–321 (2016).

Wu, Z., Shen, C. & van den Hengel, A. Bridging category-level and instance-level semantic image segmentation. Preprint at https://arxiv.org/abs/1605.06885 (2016).

He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks. In European Conference on Computer Vision (eds. Sebe, N. et al.) 630–645 (Springer, 2016).

Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations (eds. Bengio, Y. & LeCun, Y.) (ICLR, 2015).

Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of Machine Learning Research Vol. 37 (eds. Francis Bach and David Blei) 448–456 (PMLR, 2015).

Ulyanov, D., Vedaldi, A. & Lempitsky, V. Instance normalization: the missing ingredient for fast stylization. Preprint at https://arxiv.org/abs/1607.08022 (2016).

Wiesenfarth, M. et al. Methods and open-source toolkit for analyzing and visualizing challenge results. Preprint at https://arxiv.org/abs/1910.05121 (2019).

Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 7132–7141 (IEEE, 2018).

Wu, Y. & He, K. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (eds. Leal-Taixé, L. & Roth, S.) 3–19 (ECCV, 2018).

Singh, S. & Krishnan, S. Filter response normalization layer: eliminating batch dependence in the training of deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 11237–11246 (CVPR, 2020)

Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the International Conference on Machine Learning 3 (eds. Dasgupta, S. & McAllester, D.) (ICML, 2013).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2818–2826 (IEEE, 2016).

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S. & Pal, C. The importance of skip connections in biomedical image segmentation. In Deep Learning and Data Labeling for Medical Applications (eds. Carneiro, G. et al.) 179–187 (Springer, 2016).

Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (eds. Wallach, H. et al.) 8024–8035 (NeurIPS, 2019).

Isensee, F. et al. Batchgenerators—a Python framework for data augmentation. Zenodo https://doi.org/10.5281/zenodo.3632567 (2020).