n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases
Tài liệu tham khảo
Bao, 2018, Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: genomic analysis and experimental studies, Genomics
Belaich, 1997, The cellulolytic system of Clostridium cellulolyticum, J. Biotechnol., 57, 3, 10.1016/S0168-1656(97)00085-0
Biswas, 2015, Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum, Biotechnol. Biofuels, 8, 20, 10.1186/s13068-015-0204-4
Dai, 2016, Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum, Sci. Rep., 6, 28189, 10.1038/srep28189
Du, 2015, Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics, Biotechnol. Bioeng., 112, 705, 10.1002/bit.25489
Fontaine, 2002, Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824, J. Bacteriol., 184, 821, 10.1128/JB.184.3.821-830.2002
Gaida, 2016, Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose, Microb. Cell Fact., 15, 6, 10.1186/s12934-015-0406-2
Heap, 2009, A modular system for Clostridium shuttle plasmids, J. Microbiol. Methods, 78, 79, 10.1016/j.mimet.2009.05.004
Higashide, 2011, Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose, Appl. Environ. Microbiol., 77, 2727, 10.1128/AEM.02454-10
Jiang, 2014, Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations, Bioresour. Technol., 163, 172, 10.1016/j.biortech.2014.04.047
Jones, 1986, Acetone-butanol fermentation revisited, Microbiol. Rev., 50, 484, 10.1128/MR.50.4.484-524.1986
Joseph, 2018, Recent Developments of the synthetic biology Toolkit for Clostridium, Front. Microbiol., 9, 154, 10.3389/fmicb.2018.00154
Klamt, 2011, An application programming interface for Cell NetAnalyzer, Biosystems, 105, 162, 10.1016/j.biosystems.2011.02.002
Köpke, 2010, Clostridium ljungdahlii represents a microbial production platform based on syngas, Proc. Natl. Acad. Sci., 2, 201004716
Lamed, 1983, Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum, J. Bacteriol., 156, 828, 10.1128/JB.156.2.828-836.1983
Lee, 2008, Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network, Appl. Microbiol. Biotechnol., 80, 849, 10.1007/s00253-008-1654-4
Lin, 2015, Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum, Metab. Eng., 31, 44, 10.1016/j.ymben.2015.07.001
Lu, 2017, Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB, Bioresour. Technol., 243, 1000, 10.1016/j.biortech.2017.07.043
Moon, 2016, One hundred years of clostridial butanol fermentation, FEMS Microbiol. Lett., 363, fnw001, 10.1093/femsle/fnw001
Nölling, 2001, Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum, J. Bacteriol., 183, 4823, 10.1128/JB.183.16.4823-4838.2001
Olson, 2012, Recent progress in consolidated bioprocessing, Curr. Opin. Biotechnol., 23, 396, 10.1016/j.copbio.2011.11.026
Ou, 2017, Process engineering of cellulosic n-butanol production from corn-based biomass using Clostridium cellulovorans, Process Biochem., 62, 144, 10.1016/j.procbio.2017.07.009
Poehlein, 2015, The complete genome sequence of Clostridium aceticum: a missing link between Rnf-and cytochrome-containing autotrophic acetogens, MBio, 6, e01168, 10.1128/mBio.01168-15
Raynaud, 2018, Reviving the Weizmann process for commercial n-butanol production, Nat. Commun., 9, 3682, 10.1038/s41467-018-05661-z
Salehi Jouzani, 2015, Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review, Biofuel Res. J., 2, 152, 10.18331/BRJ2015.2.1.4
Sillers, 2009, Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations, Biotechnol. Bioeng., 102, 38, 10.1002/bit.22058
Sleat, 1984, Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov, Appl. Environ. Microbiol., 48, 88, 10.1128/AEM.48.1.88-93.1984
Tamaru, 2010, Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B, J. Bacteriol., 192, 901, 10.1128/JB.01450-09
Toth, 1999, The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing Clostridia from Clostridium acetobutylicum, Appl. Environ. Microbiol., 65, 4973, 10.1128/AEM.65.11.4973-4980.1999
Walter, 1992, Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes, J. Bacteriol., 174, 7149, 10.1128/JB.174.22.7149-7158.1992
Wang, 2014, Engineering clostridia for butanol production from biorenewable resources: from cells to process integration, Curr. Opin. Chem. Eng., 6, 43, 10.1016/j.coche.2014.09.003
Wang, 2015, Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA: Succinate CoA transferase, Metab. Eng., 27, 46, 10.1016/j.ymben.2014.10.005
Welch, 1989, Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum ATCC 824, Arch. Biochem. Biophys., 273, 309, 10.1016/0003-9861(89)90489-X
Wen, 2017, Enhanced solvent production by metabolic engineering of a twin-clostridial consortium, Metab. Eng., 39, 38, 10.1016/j.ymben.2016.10.013
Wen, 2019, Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering, Appl. Environ. Microbiol., AEM-02560
Xu, 2015, Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production, Appl. Microbiol. Biotechnol., 99, 1011, 10.1007/s00253-014-6249-7
Xue, 2012, High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping, Biotechnol. Bioeng., 135, 2746, 10.1002/bit.24563
Xue, 2017, Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum, Biotechnol. Adv., 35, 310, 10.1016/j.biotechadv.2017.01.007
Yang, 2015, Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose, Metab. Eng., 32, 39, 10.1016/j.ymben.2015.09.001
Yang, 2016, Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans, Appl. Microbiol. Biotechnol., 100, 2289, 10.1007/s00253-015-7141-9
Yoo, 2015, A quantitative system-scale characterization of the metabolism of Clostridium acetobutylicum, MBio, 6, e01808, 10.1128/mBio.01808-15
Yoo, 2016, Elucidation of the roles of adhE1 and adhE2 in the primary metabolism of Clostridium acetobutylicum by combining in-frame gene deletion and a quantitative system-scale approach, Biotechnol. Biofuels, 9, 92, 10.1186/s13068-016-0507-0
Yoo, 2017, Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum, Metab. Eng., 40, 138, 10.1016/j.ymben.2017.01.011
Yu, 2011, Metabolic engineering of Clostridium tyrobutyricum for n-butanol production, Metab. Eng., 13, 373, 10.1016/j.ymben.2011.04.002
Yu, 2015, Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase, Appl. Microbiol. Biotechnol., 99, 6155, 10.1007/s00253-015-6680-4
Yu, 2015, Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose, Biotechnol. Bioeng., 112, 2134, 10.1002/bit.25613
Zhang, 2017, n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2, Bioresour. Technol., 233, 51, 10.1016/j.biortech.2017.02.079
Zhang, 2018, Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production, Metab. Eng., 47, 49, 10.1016/j.ymben.2018.03.007
Zhao, 2013, Biological production of butanol and higher alcohols, 235