mRNA-Seq whole-transcriptome analysis of a single cell

Nature Methods - Tập 6 Số 5 - Trang 377-382 - 2009
Masahiro Kaneda1, Cátálin Bárbácioru2, Yangzhou Wang2, Ellen Nordman2, Clarence Lee2, Nanlan Xu2, Xiaohui Wang2, John Bodeau2, Brian B. Tuch2, Asim Siddiqui2, M. Azim Surani2
1Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK
2Molecular Cell Biology Division, Applied Biosystems, Foster City, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mardis, E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

Wold, B. & Myers, R.M. Sequence census methods for functional genomics. Nat. Methods 5, 19–21 (2008).

Schuster, S.C. Next-generation sequencing transforms today's biology. Nat. Methods 5, 16–18 (2008).

Cloonan, N. & Grimmond, S.M. Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol. 9, 234 (2008).

Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 5, 613–619 (2008).

Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

Li, H. et al. Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc. Natl. Acad. Sci. USA 105, 20179–20184 (2008).

Saitou, M., Barton, S.C. & Surani, M.A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006).

Kurimoto, K., Yabuta, Y., Ohinata, Y. & Saitou, M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat. Protoc. 2, 739–752 (2007).

Maekawa, M., Yamamoto, T., Kohno, M., Takeichi, M. & Nishida, E. Requirement for ERK MAP kinase in mouse preimplantation development. Development 134, 2751–2759 (2007).

Blake, W.J., Kærn, M., Cantor, C.R. & Collins, J.J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

Raser, J.M. & O'Shea, E.K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

Hamatani, T., Carter, M.G., Sharov, A.A. & Ko, M.S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004).

Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–648 (2007).

Murchison, E.P. et al. Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693 (2007).

O'Carroll, D. et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21, 1999–2004 (2007).

de Vries, W.N. et al. Expression of Cre recombinase in mouse oocytes: A means to study maternal effect genes. Genesis 26, 110–112 (2000).

Tam, O.H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

Rambhatla, L., Patel, B., Dhanasekaran, N. & Latham, K.E. Analysis of G protein alpha subunit mRNA abundance in preimplantation mouse embryos using a rapid, quantitative RT-PCR approach. Mol. Reprod. Dev. 41, 314–324 (1995).

Marzluff, W.F., Wagner, E.J. & Duronio, R.J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).

Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Recovery and in vitro culture of preimplantation stage embryos. in Manipulating the Mouse Embryo 3rd edn. 194–200 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2003).

Gordon, D.M., Patashnik, O. & Kuperberg, G. New constructions for covering designs. J. Comb. Designs 3, 269–284 (1995).