limma powers differential expression analyses for RNA-sequencing and microarray studies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gentleman, 2004, Bioconductor: open software development for computational biology and bioinformatics, Genome Biol., 5, R80, 10.1186/gb-2004-5-10-r80
Smyth, 2005, Limma: linear models for microarray data, Bioinformatics and Computational Biology Solutions Using R and Bioconductor., 397, 10.1007/0-387-29362-0_23
Peart, 2005, Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors, Proc. Natl. Acad. Sci. U.S.A., 102, 3697, 10.1073/pnas.0500369102
Caiazzo, 2011, Direct generation of functional dopaminergic neurons from mouse and human fibroblasts, Nature, 476, 224, 10.1038/nature10284
Hubert, 2009, Aire-deficient c57bl/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype, J. Immunol., 182, 3902, 10.4049/jimmunol.0802124
Mannsperger, 2010, Rppanalyzer: analysis of reverse-phase protein array data, Bioinformatics, 26, 2202, 10.1093/bioinformatics/btq347
Liu, 2014, Pax5 loss imposes a reversible differentiation block in B progenitor acute lymphoblastic leukemia, Genes Dev., 28, 1337, 10.1101/gad.240416.114
Su, 2014, A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium, Nat. Biotechnol., 32, 903, 10.1038/nbt.2957
Pickrell, 2010, Understanding mechanisms underlying human gene expression variation with RNA sequencing, Nature, 464, 768, 10.1038/nature08872
Law, 2014, Voom: precision weights unlock linear model analysis tools for RNA-seq read counts, Genome Biol., 15, R29, 10.1186/gb-2014-15-2-r29
Ritchie, 2006, Empirical array quality weights in the analysis of microarray data, BMC Bioinformatics, 7, 261, 10.1186/1471-2105-7-261
Yang, 2001, Normalization for cDNA microarray data, Microarrays: Optical Technologies and Informatics, 141, 10.1117/12.427982
Michaud, 2008, Integrative analysis of runx1 downstream pathways and target genes, BMC Genomics, 9, 363, 10.1186/1471-2164-9-363
Efron, 1973, Stein's estimation rule and its competitors—an empirical Bayes approach, J. Am. Stat. Assoc., 68, 117
Morris, 1983, Parametric empirical Bayes inference: theory and applications, J. Am. Stat. Assoc., 78, 47, 10.1080/01621459.1983.10477920
Smyth, 2004, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments, Stat. Appl. Genet. Mol. Biol., 3, 10.2202/1544-6115.1027
Sartor, 2006, Intensity-based hierarchical bayes method improves testing for differentially expressed genes in microarray experiments, BMC Bioinformatics, 7, 538, 10.1186/1471-2105-7-538
Phipson, 2013, Empirical Bayes in the presence of exceptional cases, with application to microarray data, Technical Report
Phipson, 2013, Empirical Bayes modelling of expression profiles and their associations, Ph.D. Thesis
Robinson, 2010, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26, 139, 10.1093/bioinformatics/btp616
Rapaport, 2013, Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data, Genome Biol., 14, R95, 10.1186/gb-2013-14-9-r95
Silver, 2009, Microarray background correction: maximum likelihood estimation for the normal–exponential convolution, Biostatistics, 10, 352, 10.1093/biostatistics/kxn042
Ritchie, 2007, A comparison of background correction methods for two-colour microarrays, Bioinformatics, 23, 2700, 10.1093/bioinformatics/btm412
Shi, 2010, Optimizing the noise versus bias trade-off for Illumina Whole Genome Expression Beadchips, Nucleic Acids Res., 38, e204, 10.1093/nar/gkq871
Martin, 1986, Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, 327, 307, 10.1016/S0140-6736(86)90837-8
Cleveland, 1993, Visualizing Data
Dudoit, 2002, Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments, Stat. Sin., 12, 111
Bolstad, 2003, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, 19, 185, 10.1093/bioinformatics/19.2.185
Liao, 2014, featureCounts: an efficient general-purpose read summarization program, Bioinformatics, 30, 923, 10.1093/bioinformatics/btt656
Anders, 2015, HTSeq—a Python framework to work with high-throughput sequencing data, Bioinformatics, 31, 166, 10.1093/bioinformatics/btu638
Li, 2011, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, 12, 323, 10.1186/1471-2105-12-323
Liao, 2013, The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote, Nucleic Acids Res., 41, e108, 10.1093/nar/gkt214
Kooperberg, 2002, Improved background correction for spotted DNA microarrays, J. Comput. Biol., 9, 55, 10.1089/10665270252833190
Shi, 2010, Estimating the proportion of microarray probes expressed in an RNA sample, Nucleic Acids Res., 38, 2168, 10.1093/nar/gkp1204
Yang, 2002, Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Res., 30, e15, 10.1093/nar/30.4.e15
Yang, 2003, Normalization for two-color cDNA microarray data, Science and Statistics: A Festschrift for Terry Speed., 403, 10.1214/lnms/1215091155
Smyth, 2013, Separate-channel analysis of two-channel microarrays: recovering inter-spot information, BMC Bioinformatics, 14, 165, 10.1186/1471-2105-14-165
Oshlack, 2007, Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes, Genome Biol., 8, R2, 10.1186/gb-2007-8-1-r2
Wu, 2013, The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease, RNA, 19, 876, 10.1261/rna.035055.112
Robinson, 2010, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol., 11, R25, 10.1186/gb-2010-11-3-r25
Hansen, 2012, Removing technical variability in RNA-seq data using conditional quantile normalization, Biostatistics, 13, 204, 10.1093/biostatistics/kxr054
Ritchie, 2004, Quantitative quality control and background correction for two-colour microarray data, Ph.D. Thesis
Smyth, 2005, Use of within-array replicate spots for assessing differential expression in microarray experiments, Bioinformatics, 21, 2067, 10.1093/bioinformatics/bti270
McCarthy, 2009, Testing significance relative to a fold-change threshold is a TREAT, Bioinformatics, 25, 765, 10.1093/bioinformatics/btp053
Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B, 57, 289, 10.1111/j.2517-6161.1995.tb02031.x
Hoffmann, 2002, Changes in gene expression profiles in developing b cells of murine bone marrow, Genome Res., 12, 98, 10.1101/gr.201501
Mosig, 2001, A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion, Genetics, 157, 1683, 10.1093/genetics/157.4.1683
Nettleton, 2006, Estimating the number of true null hypotheses from a histogram of p values, J. Agric. Biol. Environ. Stat., 11, 337, 10.1198/108571106X129135
Langaas, 2005, Estimating the proportion of true null hypotheses, with application to DNA microarray data, J. R. Stat. Soc. Ser. B, 67, 555, 10.1111/j.1467-9868.2005.00515.x
Majewski, 2010, Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells, Blood, 116, 731, 10.1182/blood-2009-12-260760
Ashburner, 2000, Gene Ontology: tool for the unification of biology, Nat. Genet., 25, 25, 10.1038/75556
Young, 2010, Gene ontology analysis for RNA-seq: accounting for selection bias, Genome Biol., 11, R14, 10.1186/gb-2010-11-2-r14
Tarca, 2013, A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity, PLOS ONE, 8, e79217, 10.1371/journal.pone.0079217
Wu, 2010, ROAST: rotation gene set tests for complex microarray experiments, Bioinformatics, 26, 2176, 10.1093/bioinformatics/btq401
Wu, 2012, Camera: a competitive gene set test accounting for inter-gene correlation, Nucleic Acids Res., 40, e133, 10.1093/nar/gks461
Wu, 2013, Gene-expression data integration to squamous cell lung cancer subtypes reveals drug sensitivity, Br. J. Cancer, 109, 1599, 10.1038/bjc.2013.452
Lim, 2010, Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways, Breast Cancer Res., 12, R21, 10.1186/bcr2560
Lim, 2009, Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers, Nat. Med., 15, 907, 10.1038/nm.2000
Asselin-Labat, 2010, Control of mammary stem cell function by steroid hormone signalling, Nature, 465, 798, 10.1038/nature09027
Mootha, 2003, PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat. Genet., 34, 267, 10.1038/ng1180
Subramanian, 2005, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U.S.A., 102, 15545, 10.1073/pnas.0506580102
Liberzon, 2011, Molecular signatures database (MSigDB) 3.0, Bioinformatics, 27, 1739, 10.1093/bioinformatics/btr260
R Development Core Team, 2014, R: A Language and Environment for Statistical Computing
Wettenhall, 2004, limmaGUI: a graphical user interface for linear modeling of microarray data, Bioinformatics, 20, 3705, 10.1093/bioinformatics/bth449
Wettenhall, 2006, affylmGUI: a graphical user interface for linear modeling of single channel microarray data, Bioinformatics, 22, 897, 10.1093/bioinformatics/btl025
Xia, 2005, Webarray: an online platform for microarray data analysis, BMC Bioinformatics, 6, 306, 10.1186/1471-2105-6-306
Psarros, 2005, RACE: Remote Analysis Computation for gene Expression data, Nucleic Acids Res., 33, W638, 10.1093/nar/gki490
Rainer, 2006, CARMAweb: comprehensive R- and Bioconductor-based web service for microarray data analysis, Nucleic Acids Res., 34, W498, 10.1093/nar/gkl038
Lemoine, 2006, Goulphar: rapid access and expertise for standard two-color microarray normalization methods, BMC Bioinformatics, 7, 467, 10.1186/1471-2105-7-467
Rehrauer, 2007, MAGMA: analysis of two-channel microarrays made easy, Nucleic Acids Res., 35, W86, 10.1093/nar/gkm302
Diaz-Uriarte, 2007, Asterias: integrated analysis of expression and aCGH data using an open-source, web-based, parallelized software suite, Nucleic Acids Res., 35, W75, 10.1093/nar/gkm229
Petryszak, 2014, Expression Atlas update—a database of gene and transcript expression from microarray and sequencing-based functional genomics experiments, Nucleic Acids Res., 42, D926, 10.1093/nar/gkt1270
Choi, 2013, Guide: a desktop application for analysing gene expression data, BMC Genomics, 14, 688, 10.1186/1471-2164-14-688
Leisch, 2002, Sweave: dynamic generation of statistical reports using literate data analysis, Compstat 2002—Proceedings in Computational Statistics, 575
Xie, 2013, Dynamic Documents with R and knitr
Gentleman, 2005, Reproducible research: a bioinformatics case study, Stat. Appl. Genet. Mol. Biol., 4, 10.2202/1544-6115.1034
Brusniak, 2008, Corra: computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics, BMC Bioinformatics, 9, 542, 10.1186/1471-2105-9-542
Lun, 2014, De novo detection of differentially bound regions for ChIP-seq data using peaks and windows: controlling error rates correctly, Nucleic Acids Res., 42, e95, 10.1093/nar/gku351