iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation
Tài liệu tham khảo
Torija, 2003, Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds, Int. J. Food Microbiol., 85, 127, 10.1016/S0168-1605(02)00506-8
Beltran, 2008, Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds, Int. J. Food Microbiol., 121, 169, 10.1016/j.ijfoodmicro.2007.11.030
Bisson, 1999, Stuck and sluggish fermentation, Am. J. Enol. Vitic., 50, 107, 10.5344/ajev.1999.50.1.107
Aguilera, 2007, Cold response in Saccharomyces cerevisiae: new functions for old mechanisms, FEMS Microbiol. Rev., 31, 327, 10.1111/j.1574-6976.2007.00066.x
Sahara, 2002, Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature, J. Biol. Chem., 277, 50015, 10.1074/jbc.M209258200
Schade, 2004, Cold adaptation in budding yeast, Mol. Biol. Cell, 15, 5492, 10.1091/mbc.E04-03-0167
Tai, 2007, Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis, Mol. Biol. Cell, 18, 5100, 10.1091/mbc.E07-02-0131
Masneuf-Pomarède, 2010, Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains, Int. J. Food Microbiol., 139, 79, 10.1016/j.ijfoodmicro.2010.01.038
Gamero, 2013, Production of aroma compounds by cryotolerant Saccharomyces species and hybrids at low and moderate fermentation temperatures, J. Appl. Microbiol., 114, 1405, 10.1111/jam.12126
González, 2006, Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations, FEMS Yeast Res., 6, 1221, 10.1111/j.1567-1364.2006.00126.x
González, 2007, Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii, Int. J. Food Microbiol., 11, 11, 10.1016/j.ijfoodmicro.2006.10.047
Sampaio, 2008, Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and sympatric with S. cerevisiae and S. paradoxus, Appl. Environ. Microbiol., 74, 2144, 10.1128/AEM.02396-07
Lopes, 2010, Natural hybrids of S. cerevisiae×S. kudriavzevii share alleles with European wild populations of Saccharomyces kudriavzevii, FEMS Yeast Res., 10, 412, 10.1111/j.1567-1364.2010.00614.x
Tronchoni, 2009, Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation, Int. J. Food Microbiol., 134, 237, 10.1016/j.ijfoodmicro.2009.07.004
Tronchoni, 2012, Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature, Int. J. Food Microbiol., 155, 191, 10.1016/j.ijfoodmicro.2012.02.004
Salvadó, 2011, Temperature adaptation markedly determines the growth and evolution within the genus Saccharomyces, Appl. Environ. Microbiol., 77, 2292, 10.1128/AEM.01861-10
López-Malo, 2013, Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature, PLoS One, 8, e60135, 10.1371/journal.pone.0060135
Tronchoni, 2014, Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations, BMC Genomics, 15, 432, 10.1186/1471-2164-15-432
Regenberg, 2006, Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae, Genome Biol., 7, R107, 10.1186/gb-2006-7-11-r107
Castrillo, 2007, Growth control of the eukaryote cell: a systems biology study in yeast, J. Biol., 6, 4, 10.1186/jbiol54
Ross, 2004, Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents, Mol. Cell. Proteomics, 3, 1154, 10.1074/mcp.M400129-MCP200
Casado-Vela, 2010, iTRAQ-based quantitative analysis of protein mixtures with large fold change and dynamic range, Proteomics, 10, 343, 10.1002/pmic.200900509
Chiva, 2012, Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation, FEMS Yeast Res., 12, 831, 10.1111/j.1567-1364.2012.00834.x
Salvadó, 2012, Functional analysis to identified genes in wine yeast adaptation to low temperature fermentation, J. Appl. Microbiol., 113, 76, 10.1111/j.1365-2672.2012.05308.x
Bely, 2002, Description of alcoholic fermentation kinetics: its variability and significance, Am. J. Enol. Vitic., 41, 319, 10.5344/ajev.1990.41.4.319
Dukes, 1999, Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/N-acetyl-l-cysteine spectrophotometric assay, Am. J. Enol. Vitic., 49, 125, 10.5344/ajev.1998.49.2.125
Shevchenko, 1996, Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels, Proc. Natl. Acad. Sci. U. S. A., 93, 14440, 10.1073/pnas.93.25.14440
Franceschini, 2013, STRING v10.0: protein–protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 41, D808, 10.1093/nar/gks1094
Clement, 2011, Use a multistage bioreactor to mimic winemaking fermentations, Int. J. Food Microbiol., 150, 42, 10.1016/j.ijfoodmicro.2011.07.016
Vázquez-Lima, 2014, Use of chemostat cultures mimicking different phases of wine fermentations as a tool for quantitative physiological analysis, Microb. Cell Factories, 13, 85, 10.1186/1475-2859-13-85
García-Ríos, 2014, Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations, BMC Genomics, 15, 1059, 10.1186/1471-2164-15-1059
Kurata, 2010, Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP, Proc. Natl. Acad. Sci. U. S. A., 106, 2571
Zavanelli, 1994, Mutations in an essential U2 small nuclear RNA structure cause cold-sensitive U2 small nuclear ribonucleoprotein function by favoring competing alternative U2 RNA structures, Mol. Cell. Biol., 14, 1689, 10.1128/MCB.14.3.1689
Fortner, 1994, A stem/loop in U6 RNA defines a conformational switch required for pre-mRNA splicing, Genes Dev., 8, 221, 10.1101/gad.8.2.221
Li, 1996, A spontaneous duplication in U6 spliceosomal RNA uncouples the early and late functions of the ACAGA element in vivo, RNA, 2, 879
Staley, 1999, An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p, Mol. Cell, 3, 55, 10.1016/S1097-2765(00)80174-4
Hilliker, 2007, U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing, Genes Dev., 21, 821, 10.1101/gad.1536107
Perriman, 2007, Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing, Genes Dev., 21, 811, 10.1101/gad.1524307
Pizarro, 2008, Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae, Appl. Environ. Microbiol., 74, 6358, 10.1128/AEM.00602-08
A.G. Macdonald, The role of membrane fluidity in complex processes under high pressure. R.E. In Marquis, A.M. Zimmerman, H.W. Jannasch, Ed. Current perspectives in high pressure biology, Academic Press, London, England.
Abe, 2000, Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae, Mol. Cell. Biol., 20, 8093, 10.1128/MCB.20.21.8093-8102.2000
Beltran, 2008, Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds, Int. J. Food Microbiol., 121, 169, 10.1016/j.ijfoodmicro.2007.11.030
Paget, 2014, Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures, Mol. Ecol., 23, 5241, 10.1111/mec.12930
Piškur, 2006, How did Saccharomyces evolve to become a good brewer?, Trends Genet., 22, 183, 10.1016/j.tig.2006.02.002
Arroyo-López, 2010, Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid, Food Microbiol., 27, 628, 10.1016/j.fm.2010.02.001