hp-Discontinuous Galerkin time stepping for parabolic problems

Computer Methods in Applied Mechanics and Engineering - Tập 190 - Trang 6685-6708 - 2001
T. Werder1, K. Gerdes2, D. Schötzau3, C. Schwab4
1Institute of Computational Sciences, ETH, CH-8092 Zürich, Switzerland
2Department of Mathematics, Chalmers University, SE-412 96 Gothenburg, Sweden
3School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
4Dept. Mathematik (D-MATH), Seminar für Angewandte Mathematik, ETH Zentrum, HG G 58.1, Ramistrasse 101, CH-8092 Zürich, Switzerland

Tài liệu tham khảo

Babuška, 1989, The hp-version of the finite element method for parabolic equations, I: The p-version in time, II: The hp-version in time, Numer. Methods Partial Differential Equations, 5, 363, 10.1002/num.1690050407 Babuška, 1990, The hp-version of the finite element method for parabolic equations, I: The p-version in time, II: The hp-version in time, Numer. Methods Partial Differential Equations, 6, 343, 10.1002/num.1690060406 Babuška, 1988, The hp-version of the finite element method for domains with curved boundaries, SIAM J. Numer. Anal., 25, 837, 10.1137/0725048 Babuška, 1990, The p- and hp-versions of the finite element method: an overview, Comput. Methods Appl. Mech. Engrg., 80, 5, 10.1016/0045-7825(90)90011-A Babuška, 1994, The p- and hp-versions of the finite element method: basic principles and properties, SIAM Rev., 36, 578, 10.1137/1036141 C.E. Baumann, J.T. Oden, A discontinuous hp finite element method for convection diffusion problems, in: G.E. Karniadakis (Ed.), Spectral, Spectral Element, and hp Methods in CFD (special issue), Comput. Methods Appl. Mech. Engrg. 175 (1999) 311–341 Cockburn, 1998, The local discontinuous Galerkin method for time-dependent convection–diffusion systems, SIAM J. Numer. Anal., 35, 2440, 10.1137/S0036142997316712 B. Cockburn, Discontinuous Galerkin methods for convection dominated problems, in: T.J. Barth, H. Deconinck (Eds.), High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, Springer, Berlin, 1999, pp. 69–224 Demkowicz, 1989, Toward a universal hp adaptive finite element strategy, I: Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77, 79, 10.1016/0045-7825(89)90129-1 Demkowicz, 1994, New developments in applications of hp-adaptive BE/FE methods to elastic scattering L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer, T. Walsh, HP90: a general and flexible Fortran 90 hp-FE code, Comput. Visualization Sci., 1998, pp. 145–163 Eriksson, 1987, Error estimates and automatic time step control for nonlinear parabolic problems, SIAM J. Numer. Anal., 24, 12, 10.1137/0724002 Eriksson, 1991, Adaptive finite element methods for parabolic problems, I: A linear model problem, SIAM J. Numer. Anal., 28, 43, 10.1137/0728003 Eriksson, 1995, Adaptive finite element methods for parabolic problems, II: Optimal error estimates in L∞L2 and L∞L∞, SIAM J. Numer. Anal., 32, 706, 10.1137/0732033 K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems, III: Time steps variable in space (in preparation) Eriksson, 1995, Adaptive finite element methods for parabolic problems, IV: Nonlinear problems, SIAM J. Numer. Anal., 32, 1729, 10.1137/0732078 Eriksson, 1995, Adaptive finite element methods for parabolic problems, V: Long-time integration, SIAM J. Numer. Anal., 32, 1750, 10.1137/0732079 Eriksson, 1998, Adaptive finite element methods for parabolic problems, VI: Analytic semigroups, SIAM J. Numer. Anal., 35, 1315, 10.1137/S0036142996310216 Eriksson, 1985, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér., 19, 611, 10.1051/m2an/1985190406111 W. Gui, I. Babuška, The h-, p- and hp-versions of the finite element method in one dimension, I: The error analysis of the p-version, II: The error analysis of the h- and hp-versions, III: The adaptive hp-version, Numer. Math. (49) (1986) 577–612, 613–657, 659–683 B.Q. Guo, I. Babuška, The hp-version of the finite element method, I: The basic approximation results, II: General results and applications, Comp. Mech. (1) (1986) 21–41, 203–226 LeSaint, 1974, On a finite element method for solving the neutron transport equation, 89 J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. I, Springer, New York, 1972 Makridakis, 1997, On the stability of the discontinuous Galerkin method for the heat equation, SIAM J. Numer. Anal., 34, 389, 10.1137/S0036142994261658 Melenk, 1998, hp-FEM for reaction–diffusion equations, I: Robust exponential convergence, SIAM J. Numer. Anal., 35, 1520, 10.1137/S0036142997317602 Melenk, 1999, Analytic regularity for a singularly perturbed problem, SIAM J. Math. Anal., 30, 379, 10.1137/S0036141097317542 Oden, 1989, Toward a universal hp adaptive finite element strategy, II: A posteriori error estimation, Comput. Methods Appl. Mech. Engrg., 77, 113, 10.1016/0045-7825(89)90130-8 Oden, 1997, Parallel domain decomposition solver for adaptive hp finite element methods, SIAM J. Numer. Anal., 34, 2090, 10.1137/S0036142994278887 Schenk, 1999, Efficient sparse LU factorization with left–right looking strategy on shared memory multiprocessors, BIT, 40, 158, 10.1023/A:1022326604210 O. Schenk, W. Fichtner, K. Gärtner, Scalable parallel sparse factorization with left–right looking strategy on shared memory multiprocessors, in: P. Sloot, M. Bubak, A. Hoekstra, B. Hertzberger, (Eds.), High-Performance Computing and Networking, No. 1593, The Seventh International Conference on High Performance Computing and Networking Europe, April 12–14, 1999, Amsterdam, The Netherlands D. Schötzau, hp-DGFEM for parabolic evolution problems – applications to diffusion and viscous incompressible fluid flow, Doctoral Dissertation No. 13041, ETH, Zürich, 1999 Schötzau, 2000, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38, 837, 10.1137/S0036142999352394 Schötzau, 2000, An hp a-priori error analysis of the DG time-stepping method for initial value problems, Calcolo, 37, 207, 10.1007/s100920070002 Schwab, 1998 Szabó, 1991 Thomée, 1997