ecospat: an R package to support spatial analyses and modeling of species niches and distributions

Ecography - Tập 40 Số 6 - Trang 774-787 - 2017
Valeria Di Cola1, Olivier Broennimann1, Blaise Petitpierre1, Frank T. Breiner2,1, Manuela D’Amen1, Christophe F. Randin3,2,1, Robin Engler4, Antoine Guisan5, Dorothea Pio6,1, Luigi Maiorano1, Loïc Pellissier7,2, Rubén G. Mateo1, Wim Hordijk8,1, Nicolas Salamin9,1
1Université de Lausanne = University of Lausanne
2Swiss Federal Institute for Forest, Snow and Landscape Research WSL
3Centre de Recherches sur les Ecosystèmes d'Altitude
4Swiss Institute of Bioinformatics [Lausanne]
5Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR
6Fauna and Flora International [Cambridge, UK]
7Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich]
8Konrad Lorenz Institute for Evolution and Cognition Research
9Genopode

Tóm tắt

The aim of the ecospat package is to make available novel tools and methods to support spatial analyses and modeling of species niches and distributions in a coherent workflow. The package is written in the R language (R Development Core Team) and contains several features, unique in their implementation, that are complementary to other existing R packages. Pre‐modeling analyses include species niche quantifications and comparisons between distinct ranges or time periods, measures of phylogenetic diversity, and other data exploration functionalities (e.g. extrapolation detection, ExDet). Core modeling brings together the new approach of ensemble of small models (ESM) and various implementations of the spatially‐explicit modeling of species assemblages (SESAM) framework. Post‐modeling analyses include evaluation of species predictions based on presence‐only data (Boyce index) and of community predictions, phylogenetic diversity and environmentally‐constrained species co‐occurrences analyses. The ecospat package also provides some functions to supplement the ‘biomod2’ package (e.g. data preparation, permutation tests and cross‐validation of model predictive power). With this novel package, we intend to stimulate the use of comprehensive approaches in spatial modelling of species and community distributions.

Từ khóa


Tài liệu tham khảo

10.1111/jbi.12121

10.1371/journal.pone.0080563

10.1098/rspb.2013.1446

10.1111/ddi.12107

10.1111/geb.12146

10.1111/j.1461-0248.2012.01772.x

10.1111/j.1365-2486.2012.02783.x

10.1016/S0304-3800(02)00200-4

10.1111/2041-210X.12403

10.1111/j.1461-0248.2007.01060.x

10.1111/j.1466-8238.2011.00698.x

10.1111/jbi.12274

10.1098/rsbl.2014.0638

10.1111/geb.12102

10.1111/j.1469-8137.1976.tb01532.x

10.1111/jbi.12225

10.1111/jbi.12485

10.1111/geb.12357

Spatial predictions at the community level: from current approaches to future frameworks

Dawson M. N., 2013, An horizon scan of biogeography, Front. Biogeogr, 5, fb_18854, 10.21425/F55218854

10.1002/ece3.1168

10.1371/journal.pone.0066559

10.18637/jss.v022.i04

10.1111/j.1472-4642.2011.00792.x

10.1111/jvs.12002

10.1038/nclimate1514

10.1034/j.1600-0587.2002.250510.x

10.1111/geb.12208

10.1111/j.2041-210X.2010.00036.x

10.1111/j.1600-0587.2009.05789.x

10.1111/j.1600-0587.2012.07608.x

10.1371/journal.pone.0036976

10.1007/s10493-012-9600-7

10.1016/j.biocon.2012.08.029

Fitzpatrick M. C., 2007, The biogeography of prediction error: why does the introduced range of the fire ant over‐predict its native range? – Global Ecol, Biogeogr, 16, 24, 10.1111/j.1466-8238.2006.00258.x

10.1016/j.biocon.2013.08.009

10.1371/journal.pone.0097122

Mapping species distribution: spatial inference and prediction

10.1007/s10980-015-0158-8

10.1111/ele.12259

10.1371/journal.pone.0111468

10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2

10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2

10.1007/s00442-009-1474-y

10.1111/evo.12355

10.1111/ibi.12144

10.1016/S0304-3800(00)00354-9

10.1111/j.1365-2699.2011.02550.x

10.1111/ele.12189

10.1016/j.tree.2014.02.009

Regression modeling strategies: with applications to linear models logistic regression and survival analysis

10.1098/rsbl.2010.0948

raster: geographic data analysis and modeling

dismo: species distribution modeling

10.1016/S0304-3800(01)00396-9

10.1016/j.ecolmodel.2006.05.017

Iwamura T., 2013, How robust are global conservation priorities to climate change? – Global Environ, Change, 23, 1277

10.1093/bioinformatics/btq166

Koch C., 1924, 2013

10.1111/nph.12900

10.2307/1941447

10.1111/geb.12191

Realized climatic niches are conserved along maximum temperatures among herpetofaunal invaders

10.1016/j.biocon.2010.07.007

10.1111/j.0030-1299.2004.13250.x

Lurgi M., 2015, Modelling range dynamics under global change: which framework and why? – Methods Ecol, Evol, 6, 247

10.1146/annurev-ecolsys-112414-054441

10.1111/2041-210X.12222

10.1111/j.1466-8238.2012.00767.x

10.1007/s10344-014-0894-0

10.1371/journal.pone.0015297

10.1371/journal.pone.0083087

10.1371/journal.pone.0032586

10.1111/ecog.01014

10.1038/srep25546

10.1111/j.1466-8238.2009.00497.x

10.1371/journal.pone.0042097

10.3391/ai.2014.9.4.09

10.1111/j.1461-0248.2010.01563.x

10.1111/ecog.01881

10.1002/ece3.868

10.1093/jpe/rtt064

10.1111/j.1466-8238.2009.00476.x

10.1098/rstb.2012.0479

10.1093/bioinformatics/btg412

10.1111/gcb.12515

10.1016/j.tree.2007.11.005

10.1111/j.1600-0587.2010.06386.x

Pellissier L., 2012, High host‐plant nitrogen content: a prerequisite for the evolution of ant–caterpillar mutualism? – J. Evol, Biol, 25, 1658

10.1111/j.1600-0587.2012.07716.x

10.1111/ele.12083

10.1371/journal.pone.0105025

10.1034/j.1600-0706.2001.930112.x

Ecological niches and geographic distributions

10.1126/science.1215933

10.1890/09-0760.1

10.1016/j.ecolmodel.2005.03.026

10.1111/j.1365-2656.2008.01471.x

10.1111/j.1523-1739.2011.01773.x

10.1111/gcb.12524

10.1111/j.1466-8238.2012.00790.x

10.1371/journal.pone.0046873

10.1046/j.1461-0248.2000.00143.x

10.1111/ecog.01961

10.1111/j.1365-2699.2006.01466.x

10.1111/j.1654-1103.2009.01098.x

10.1371/journal.pone.0110894

10.1098/rspb.2014.1995

10.1007/s00442-008-1082-2

10.1371/journal.pone.0113246

10.1080/13658816.2011.554296

10.1111/j.1461-0248.2007.01107.x

10.1111/ibi.12194

10.1007/BF00317345

10.1007/s10530-013-0539-3

10.1111/geb.12050

10.1111/geb.12050

10.1111/j.1600-0587.2013.00077.x

10.1007/s10530-014-0774-2

10.1111/jbi.12085

10.1046/j.1365-2486.2003.00666.x

10.1111/j.1600-0587.2008.05742.x

biomod2: ensemble platform for species distribution modeling

10.1073/pnas.1405766111

PhyloMeasures: fast and exact algorithms for computing phylogenetic biodiversity measures

10.1111/j.1472-4642.2007.00346.x

SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises

10.1163/15685381-00002954

10.1111/j.1558-5646.2008.00482.x

10.1111/j.1600-0587.2013.00242.x

10.1371/journal.pone.0046671

10.1111/j.1472-4642.2011.00874.x

10.1111/j.1472-4642.2008.00482.x

10.1111/j.1469-185X.2012.00235.x

10.1038/nclimate2074

spaa: species association analysis