eDNA als neues Werkzeug für das Gewässermonitoring – Potenzial und Rahmenbedingungen anhand ausgewählter Anwendungsbeispiele aus Österreich
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baird, D.J., and M. Hajibabaei (2012): Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol Ecol 21:2039–2044
Biggs, J., N. Ewald, A. Valentini, et al (2015): Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol Conserv 183:19–28. doi: 10.1016/j.biocon.2014.11.029
Birk, S., Böhmer, J. (2007): Die Interkalibrierung nach EG-Wasserrahmenrichtlinie – Grundlagen und Verfahren. Wasserwirtschaft 9: 10–14
Birk, S., W. Bonne, A. Borja, et al (2012): Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic 18:31–41. doi: 10.1016/j.ecolind.2011.10.009
Birk, S., E. Bellak, Böhmer, J., et al (2013): Die Interkalibrierung nach EG-Wasserrahmenrichtlinie – Neue Ergebnisse und Resümee. Wasserwirtschaft 1/2:52–55
BMLFUW (2015): Leitfaden für die Erhebung der biologischen Qualitätselemente. Online: https://www.bmnt.gv.at/wasser/wasser-oesterreich/plan_gewaesser_ngp/nationaler_gewaesserbewirtschaftungsplan-ngp/bio_lf.html. Zugegriffen: 22.1.2020
Bohmann, K., A. Evans, M.T.P. Gilbert, et al (2014): Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367. doi: 10.1016/j.tree.2014.04.003
Brauman, K. A., G.C. Daily, T.K. Duarte, and H.A. Mooney (2007): The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu Rev Environ Resour 32:67–98. doi: 10.1146/annurev.energy.32.031306.102758
Burgener, M., Hübner, P. (1998): Mitochondrial DNA enrichment for species identification and evolutionary analysis. Z Lebensm Unters Forsch 207:261–263. doi: 10.1007/s002170050329
Bylemans, J., Gleeson, D.M., Duncan, R.P., et al (2019): A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environ DNA 402–414. doi: 10.1002/edn3.41
Carew, M. E., V.J. Pettigrove, L. Metzeling, and A.A. Hoffmann (2013): Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species. Front Zool 10:45. doi: 10.1186/1742-9994-10-45
Carim, K.J., J.C.S. Dysthe, M.K. Young, et al (2016): An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America. Conserv Genet Resour 8:197–199. doi: 10.1007/s12686-016-0531‑1
Coissac, E., T. Riaz, and N. Puillandre 2012. „Bioinformatic challenges for DNA metabarcoding of plants and animals.“ Mol Ecol 21:1834–1847. doi: 10.1111/j.1365-294X.2012.05550.x
Creer S., K. Deiner, S. Frey, et al (2016):. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7:1008–1018. doi: 10.1111/2041-210X.12574
Deiner, K., H.M. Bik, E. Mächler, et al (2017): Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895. doi: 10.1111/mec.14350
Deiner, K., Walser, J.-C., Maechler, E., Altermatt, F. (2015): Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Conserv 183:53–63. doi: 10.1016/j.biocon.2014.11.018
Doi, H., I. Katano, Y. Sakata, et al (2017): Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem. R Soc OPEN Sci 4:. doi: 10.1098/rsos.170568
Dudgeon, D., A.H. Arthington, M.O. Gessner, et al (2006): Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. doi: 10.1017/S1464793105006950
Díaz, S., Settele, J., Brondízio, E. (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Online: https://ipbes.net/global-assessment-report-biodiversity-ecosystem-services. Zugegriffen: 22.1.2020
Evans, N.T., Olds, B.P., Renshaw, M.A., et al (2016): Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol Ecol Resour 16:29–41. doi: 10.1111/1755-0998.12433
Ficetola, G.F., C. Miaud, F. Pompanon, and P.Taberlet (2008:) Species detection using environmental DNA from water samples. Biol Lett 4:423–425. doi: 10.1098/rsbl.2008.0118
Fischer, A., and C. Gumpinger (2016): Erfassung von Beständen ausgewählter Kleinfischarten mit Schwerpunkt auf der Koppe (Cottus gobio) in den Einzugsgebieten der Isel und des Debantbachs. 57 pp, Studie im Auftrag der Tiroler Umweltanwaltschaft, des Nationalparks Hohe Tauern und des Tiroler Fischereiverbandes
Gibert, J., and L. Deharveng (2002): Subterranean Ecosystems: A Truncated Functional Biodiversity. Bioscience 52:473–481. doi: 10.1641/0006-3568(2002)052[0473:SEATFB]2.0.CO;2
Gleick, P.H. (1996): Water resources. In: Schneider SH (ed) Encyclopedia of Climate and Weather. Oxford Unviersity Press, New York, pp 817–823
Goldberg, C.S., C.R. Turner, K. Deiner, et al (2016): Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol 7:1299–1307. doi: 10.1111/2041-210X.12595
Harper, L.R., Lawson Handley, L., Hahn, C., et al (2018): Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol Evol 8:6330–6341. doi: 10.1002/ece3.4013
Harper, L.R., A.S. Buxton, H.C. Rees, et al (2019): Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826:25–41. doi: 10.1007/s10750-018-3750‑5
Hauer, C., M. Haimann., P. Holzapfel, et al. (unpublished data): Controlled reservoir drawdown—challenges for sediment management and integrative monitoring: an Austrian case study—Part A: Reach scale.
Hawksworth, D.J., Kalin-Arroyo, M.T. (1995): Magnitude and distribution of biodiversity. In: Heywood VH (ed) Global biodiversity Assessment. Cambridge University Press, Cambridge, pp 107–191
Hebert, P.D.N., Cywinska, A., Ball, S.L., DeWaard, J.R. (2003): Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321. doi: 10.1098/rspb.2002.2218
Hering, D, Borja, A., Jones, J.I., et al (2018): Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205. doi: 10.1016/j.watres.2018.03.003
IBOL (2019): Our Vision. https://ibol.org/about/our-vision/. Accessed 1 Nov 2019
Kvist, S. (2013): Barcoding in the dark?: A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol Phylogenet Evol 69:39–45. https://doi.org/10.1016/j.ympev.2013.05.012
Longmire, J.L., Maltbie, M., Baker, R.J. (1997): Use of „Lysis Buffer“ in DNA isolation and its implication for museum collections, Museum of Texas Tech University, Lubbock
Mächler, E., K. Deiner, P. Steinmann, and F. Altermatt (2014): Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species. Freshw Sci 33:1174–1183. doi: 10.1086/678128.
Mauvisseau, Q., J. Davy-Bowker, M. Bulling, et al (2019): Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate. Sci Rep 9:. doi: 10.1038/s41598-019-50571‑9
Muhar, S., Pohl, G., Stelzhammer, M. et al (2011): Integratives Flussgebietsmanagement: Abstimmung wasserwirtschaftlicher, gewässerökologischer und naturschutzfachlicher Anforderungen auf Basis verschiedener EU-Richtlinien (Beispiel Steirische Enns). Österr Wasser- und Abfallw 63:167–173. doi:10.1007/s00506-011-0336‑0
Pilliod, D.S., C.S. Goldberg, R.S. Arkle, L.P. Waits (2013): Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can J Fish Aquat Sci 70:1123–1130. doi: 10.1139/cjfas-2013-0047
Pont, D., M. Rocle, A. Valentini, et al (2018): Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci Rep 8:1–13. doi: 10.1038/s41598-018-28424‑8
Renshaw, M.A., Olds, B.P., Jerde, C.L., et al (2015): The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol Ecol Resour 15:168–176. doi: 10.1111/1755-0998.12281
Robinson, C.V., T.M. Uren Webster, J. Cable, et al (2018): Simultaneous detection of invasive signal crayfish, endangered white-clawed crayfish and the crayfish plague pathogen using environmental DNA. Biol Conserv 222:241–252. doi: 10.1016/j.biocon.2018.04.009
Roy, M., V. Belliveau, N.E. Mandrak, N. Gagné (2018): Development of environmental DNA (eDNA) methods for detecting high-risk freshwater fishes in live trade in Canada. Biol Invasions 20:299–314. doi: 10.1007/s10530-017-1532‑z
Ruppert, K.M., R.J. Kline, M.S. Rahman (2019): Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 17:1–29. doi: 10.1016/j.gecco.2019.e00547
Sambrook, J., Fritsch, E., Maniatis, T. (1989): Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, NewYork
Schenekar, T., Sturm, S., Weiss, S. (2019): Auf den Spuren der Äsche im Gesäuse: Nachweis und Kartierung von Thymallus thymallus in der Enns und dem Johnsbach mittels eDNA. Österreichs Fischerei Heft 11/12:297–309
Schletterer, M., B. Hofer , R. Obendorfer R., et al. (2017): Integrative monitoring approaches for the sediment management in Alpine reservoirs: case study Gepatsch (HPP Kaunertal, Tyrol). in: Wieprecht, S., Haun, S., Weber, K., Noack, M., Terheiden, K. (Eds.): River Sedimentation, pp. 1161–1169 Proceedings of the 13th International Symposium on River Sedimentation (Stuttgart, Germany, 19–22 September, 2016), Taylor & Francis, ISBN: 978-1-138-02945‑3.
Sturm, S. (2019): Nachweis und Kartierung von Thymallus thymallus im Nationalpark Gesäuse. Diplomarbeit, Institut für Biologie, Karl-Franzens University Graz.
Taberlet, P., E. Coissac, M. Hajibabaei, and L.H. Rieseberg (2012): Environmental DNA. Mol Ecol 21:1789–1793. doi: 10.1111/j.1365-294X.2012.05542.x
Thomsen, P.F., and E. Willerslev (2015): Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18. doi: 10.1016/j.biocon.2014.11.019
UIBK (2019): Wissenschaft für alle: Der Frosch im Wassertropfen. Medieninformation 5.4.2019, online: https://www.uibk.ac.at/public-relations/presse/archiv/2019/1125/. Zugegriffen: 22.1.2020
Weigand, H., A.J. Beermann, F. Čiampor, et al (2019): DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. bioRxiv 576553. doi: 10.1101/576553
Weiss, S., K. Deiner, J. A. Tuhtan, C. Gumpinger, and M. Schletterer (2018): Genetische Analysen von Fischbeständen: Populationsgenetik und eDNA. Wasserwirtschaft 2–3:22–29
WWF (2016): Living Planet Report 2016 Risk and resilience in a new era. Gland, Swirtzerland
WWF (2018): Living Planet Report 2018: Aiming higher. Gland, Switzerland