cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination

Nature Methods - Tập 14 Số 3 - Trang 290-296 - 2017
Ali Punjani1, John L. Rubinstein2, David J. Fleet1, Marcus A. Brubaker3
1Department of Computer Science, The University of Toronto, Toronto, Ontario, Canada
2Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
3Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kühlbrandt, W. Biochemistry. The resolution revolution. Science 343, 1443–1444 (2014).

Smith, M.T.J. & Rubinstein, J.L. Structural biology. Beyond blob-ology. Science 345, 617–619 (2014).

Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

Bai, X.C., Fernandez, I.S., McMullan, G. & Scheres, S.H.W. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013).

Yan, C. et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191 (2015).

Banerjee, S. et al. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351, 871–875 (2016).

Sirohi, D. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352, 467–470 (2016).

Abeyrathne, P.D., Koh, C.S., Grant, T., Grigorieff, N. & Korostelev, A.A. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 5, e14874 (2016).

Kimanius, D., Forsberg, B.O., Scheres, S.H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

Henderson, R. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc. Natl. Acad. Sci. USA 110, 18037–18041 (2013).

Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

Scheres, S.H.W. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).

Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

Hoang, T.V., Cavin, X., Schultz, P. & Ritchie, D.W. gEMpicker: a highly parallel GPU-accelerated particle picking tool for cryo-electron microscopy. BMC Struct. Biol. 13, 25 (2013).

Moore, G.E. Progress in digital integrated electronics. In Proc. Int. Elect. Devices Meet 11–13 (IEEE, 1975).

Sigworth, F.J. A maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122, 328–339 (1998).

Nocedal, J. & Wright, S.J. Numerical Optimization (Springer, 2000).

Calafiore, G.C. & El Ghaoui, L. Optimization Models (Cambridge University Press, 2014).

Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proc. COMPSTAT'2010 (eds. Lechevallier, Y. & Saporta, G.) 177–186 (2010).

Krizhevsky, A., Sutskever, I. & Hinton, G.E. In Adv. Neural Inf. Process. Syst. (eds. Pereira, F., Burges, C.J.C. et al.) 1–9 (NIPS, 2012).

Taigman, Y., Yang, M., Ranzato, M. & Wolf, L. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (eds. Dickinson, S. et al.) 1701–1708 (IEEE Computer Society, 2014).

Schep, D.G., Zhao, J. & Rubinstein, J.L. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance. Proc. Natl. Acad. Sci. USA 113, 3245–3250 (2016).

Zhao, J., Benlekbir, S. & Rubinstein, J.L. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521, 241–245 (2015).

Kearfott, R.B. Rigorous Global Search: Continuous Problems (Springer, 2014).

Little, J.D.C., Karel, C., Murty, K.G. & Sweeney, D.W. An algorithm for the traveling salesman problem. Oper. Res. 11, 972–989 (1963).

Yang, J., Li, H. & Jia, Y. Go-ICP: solving 3D registration efficiently and Globally optimally. In Proc. IEEE Int. Conf. Comput. Vis. (eds. Davis, L. & Hartley, R.) 1457–1464 (IEEE, 2013).

Campbell, M.G., Veesler, D., Cheng, A., Potter, C.S. & Carragher, B. 2.8 Å resolution reconstruction of the thermoplasma Acidophilum 20S proteasome using cryo-electron microscopy. eLife 4, e06380 (2015).

Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 3, 1–20 (2014).

Scheres, S.H.W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

Rosenthal, P.B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

Yan, X., Cardone, G., Zhang, X., Zhou, Z.H. & Baker, T.S. Single particle analysis integrated with microscopy: a high-throughput approach for reconstructing icosahedral particles. J. Struct. Biol. 186, 8–18 (2014).

Murray, S.C. et al. Validation of cryo-EM structure of IP3R1 channel. Structure 21, 900–909 (2013).

Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

Leschziner, A.E. & Nogales, E. The orthogonal tilt reconstruction method: an approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J. Struct. Biol. 153, 284–299 (2006).

Penczek, P.A. & Asturias, F.J. Ab initio cryo-EM structure determination as a validation problem. In Proc. IEEE Int. Conf. on Image Process. (eds. Pesquet-Popescu, B. & Fowler, J.) 2090–2094 (IEEE, 2014).

Sorzano, C.O.S. et al. A statistical approach to the initial volume problem in Single Particle Analysis by Electron Microscopy. J. Struct. Biol. 189, 213–219 (2015).

Jaitly, N., Brubaker, M.A., Rubinstein, J.L. & Lilien, R.H. A Bayesian method for 3D macromolecular structure inference using class average images from single particle electron microscopy. Bioinformatics 26, 2406–2415 (2010).

Elmlund, D. & Elmlund, H. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles. J. Struct. Biol. 180, 420–427 (2012).

Elmlund, H., Elmlund, D. & Bengio, S. PRIME: probabilistic initial 3D model generation for single-particle cryo-electron microscopy. Structure 21, 1299–1306 (2013).

Brubaker, M.A., Punjani, A. & Fleet, D.J. Building proteins in a day: Efficient 3D molecular reconstruction. In Proc. IEEE Comp. Soc. Conf. on Comput. Vis. Pattern Rec. (eds. Bischof, H. et al.) (IEEE, 2015).

Dvornek, N.C., Sigworth, F.J. & Tagare, H.D. SubspaceEM: a fast maximum-a-posteriori algorithm for cryo-EM single particle reconstruction. J. Struct. Biol. 190, 200–214 (2015).

Cianfrocco, M.A. & Leschziner, A.E. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud. eLife 4, e06664 (2015).

Bai, X.-C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S.H. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015).

Rubinstein, J.L. & Brubaker, M.A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).

Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

Punjani, A., Rubinstein, J., Fleet, D. & Brubaker, M. Protocol for rapid unsupervised cryo-EM structure determination using cryoSPARC software. Protocol Exchange http://dx.doi.org/10.1038/protex.2017.009 (2016).

Iudin, A., Korir, P.K., Salavert-Torres, J., Kleywegt, G.J. & Patwardhan, A. EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13, 387–388 (2016).

Sutskever, I., Martens, J., Dahl, G.E. & Hinton, G.E. On the importance of initialization and momentum in deep learning. J. Mach. Learn. Res. 28, 1139–1147 (2013).