Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
cGMP và Ethylene tham gia vào việc duy trì cân bằng ion dưới tác động của muối trong rễ Arabidopsis
Tóm tắt
cGMP thúc đẩy sản xuất ethylene và nâng cao sự cảm nhận về ethylene. Ethylene nội sinh hoặc sự tích lũy cGMP duy trì sự ổn định ion nhằm tăng cường khả năng chịu muối. đột biến etr1-3 không nhạy cảm với cGMP khi chịu stress muối. Trong nghiên cứu hiện tại, chúng tôi trình bày một mạng tín hiệu liên quan đến ethylene và cGMP trong con đường chịu đựng muối của rễ Arabidopsis. Kết quả cho thấy rằng đột biến không nhạy cảm với ethylene etr1-3 nhạy cảm hơn với stress muối so với kiểu hoang dã (WT). etr1-3 thể hiện sự rò rỉ điện giải lớn hơn, các chất phản ứng với axit thiobarbituric và tỷ lệ Na+/K+ cao hơn, nhưng hoạt tính H+-ATPase màng plasma (PM) thấp hơn so với WT dưới các mức NaCl khác nhau. Việc ứng dụng acid 1-aminocyclopropane-1-carboxylic (ACC, một tiền chất ethylene) hoặc 8-Br-cGMP (chất tương tự cGMP) đã giảm thiểu tổn thương do NaCl gây ra bằng cách duy trì tỷ lệ Na+/K+ thấp hơn và tăng cường hoạt tính H+-ATPase PM ở dạng WT, nhưng không ở etr1-3. Rễ được điều trị bằng 8-Br-cGMP có thể thúc đẩy sản xuất ethylene và nâng cao sự biểu hiện của gen ACC synthase ở WT. Ngoài ra, tác động của 8-Br-cGMP dưới stress NaCl đã bị ức chế bởi axit aminooxyacetic (một chất ức chế sinh tổng hợp ethylene), nhưng 6-Anilino-5,8-quinolinedione (Ly83583, một chất ức chế guanylate cyclase) không thể ảnh hưởng đến tác động của ACC ở WT. Những kết quả này gợi ý rằng ethylene hoạt động như một tín hiệu hạ lưu của cGMP kích thích hoạt tính H+-ATPase PM, từ đó cuối cùng điều chỉnh sự ổn định ion trong khả năng chịu muối của Arabidopsis. Hơn nữa, cGMP nâng cao sự cảm nhận về ethylene trong Arabidopsis dưới stress muối, điều này đã làm đảo ngược sự tăng cường của ETR1 do muối gây ra và làm tăng ERF1 ở mức transcript ở WT. Tóm lại, cGMP điều chỉnh con đường chịu đựng muối của ethylene thông qua việc điều chỉnh quá trình sinh tổng hợp và cảm nhận ethylene trong rễ Arabidopsis.
Từ khóa
#cGMP #ethylene #Arabidopsis #stress muối #H+-ATPase #ion homeostasisTài liệu tham khảo
Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254
Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815
Asensi-Fabado MA, Cela J, Müller M, Arrom L, Chang C, Munné-Bosch S (2012) Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to saltstress. J Plant Physiol 169:360–368
Benavente LM, Alonso JM (2006) Molecular mechanisms of ethylene signaling in Arabidopsis. Mol BioSyst 2:165–173
Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544
Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866
Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. PNAS 110:1963–1971
Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041
Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320
García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61(14):3885–3899
Gévaudant F, Duby G, Stedingk EV, Zhao RM, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776
Goh CH, Kinoshita T, Oku T, Shimazaki K (1996) Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplasts. Plant Physiol 111:433–440
Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123:1449–1458
Hayashi Y, Nakamura S, Takemiya A, Takahashi Y, Shimazaki K, Kinoshita T (2010) Biochemical characterization of in vitro phosphorylation and dephosphorylation of the plasma membrane H+-ATPase. Plant Cell Physiol 51:1186–1196
Hayashi M, Inoue S, Takahashi K, Kinoshita T (2011) Immunohisto-chemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. Plant Cell Physiol 52:1238–1248
Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271
Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714
Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J (2004) Salt cress: a halophyte and cryophyte Arabidopsis related model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1717–1737
Isner JC, Nühse T, Maathuis FJM (2012) The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins. J Exp Bot 63:3199–3205
Kagota S, Tamashiro A, Yamaguchi Y, Nakamura K, Kunitomo M (2002) Highsalt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. J Pharmacol Exp Ther 302:344–351
Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307
Krysan PJ, Young JC, Tax F, Sussman MR (1996) Identification of transferred DNA insertions within Arabidopsis genome is involved in signal transduction and ion transport. PNAS 93:8145–8150
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Li JS, Jia HL (2013) cGMP modulates Arabidopsis lateral root formation through regulation of polar auxin transport. Plant Physiol Biochem 66:105–117
Li JS, Chen GS, Wang XM, Zhang YL, Jia HL, Bi YR (2011a) Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii. Physiol Plantarum 141:239–250
Li JS, Wang XM, Zhang YL, Jia HL, Bi YR (2011b) cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots. Planta 234:709–722
Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599
Lucena C, Waters BM, Romera FJ, Garcia MJ, Morales M, Alcantara E, Perez-Vicente R (2006) Ethylene could influence ferric reductase, iron transporter and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J Exp Bot 57:4145–4154
Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711
Michelet B, Boutry M (1995) The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol 108:1–6
Miguel A, Frédéric G, Mohammed O, Marc B (2003) The plasma membrane proton pump ATPase, the significance of gene subfamilies. Planta 216:355–365
Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta 1465:1–16
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250
Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signal ling in plants. New Phytol 159:10–12
Niu X, Zhu JK, Narasimhan ML, Bressan RA, Haseqawa PM (1993) Plasma-membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L. Planta 190:433–438
Niu X, Bressan R, Hasegawa P, Pardo J (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742
Olsson A, Svennelid F, Ek B, Sommarin M, Larsson C (1998) A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding. Plant Physiol 118:551–555
Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Bermann RE (1994) Gaseous nitric oxide stimulates guanosine ~3′,5′-cyclic monophosphate (cGMP) formation in spruce needles. Phytochemistry 36:259–262
Qiu QS (1999) Influence of osmosis stress on the lipid physical states of plasma membranes form wheat roots. Acta Bot Sin 41:161–165
Qiu QS, Su XF (1998) The influence of extracellular-side Ca2+ on the activity of the plasma membrane H+-ATPase from wheat roots. Aust J Plant Physiol 25:923–928
Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904
Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. PNAS 95:5812–5817
Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811
Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu MZ, Xu Y, Chen SL (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958
Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131–S151
Wang YB, Feng HY, Qu Y, Cheng JQ, Zhao ZG, Zhang MX, Wang XL, An LZ (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57:51–61
Wang HH, Liang XL, Wan Q, Wang XM, Bi YR (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307
Waters BM, Lucena C, Romera FJ, Jester GG, Wynn AN, Rojas CL, Alcántara E, Pérez-Vicente R (2007) Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol Biochem 45:293–301
Xiong LM, Zhu JK (2002) Salt tolerance. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville
Xu Z, Chen M, Li L, Ma Y (2008) Functions of the ERF transcription factor family in plants. Botany 86:969–977
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologsi A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112
Yang YL, Zhang F, He WL, Wang XM, Zhang LX (2003) Iron-mediated inhibition of H+-ATPase in plasma membrane vesicles isolated from wheat roots. Cell Mol Life Sci 60:1249–1257
Yuan R, Wu Z, Kostenyuk IA, Burns JK (2005) G-protein-coupled alpha2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase. J Exp Bot J 56:1867–1875
Zhang X, Wang H, Takemiya A, Song CP, Kinoshita T, Shimazaki K (2004) Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced depho-sphorylation of the plasma membrane H+ -ATPase in guard cell protoplasts. Plant Physiol 136:4150–4158
Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555
Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785
Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R (2013) EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237:1443–1451
Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192
Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857
Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445