Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các đoạn cDNA và Phân Tích Biểu Hiện của cpHSC70 và mtHSC70 trong Cải Ngọn Không Đắm
Tóm tắt
Protein sốc nhiệt 70 kDa (HSP70) là cần thiết cho khả năng chịu nhiệt và phát triển ở thực vật cũng như các sinh vật khác. Chúng tôi đã áp dụng các kỹ thuật sao chép dựa trên đồng đồng gen và PCR phiên mã ngược định lượng thời gian thực để xác định chức năng của BccpHSC70s và BcmtHSC70s - các protein tương đồng sốc nhiệt (HSCs) nằm trong chất diệp lục và ti thể, tương ứng - trong cải ngọn không đắm (Brassica campestris ssp. chinensis). Các đoạn cDNA của BccpHSC70s và BcmtHSC70s có sự đồng hình cao với nhau và với các đoạn từ các loài thực vật khác. Không giống như các HSP70 khác, BccpHSC70-1 chỉ có hai motif đặc trưng (ba motif cổ điển được tìm thấy trong chuỗi amino acid được dự đoán của HSP70, nhưng không phải tất cả HSP70 đều chứa cả ba miền), và được biểu hiện liên tục trong ba giống đã phát hiện; biểu hiện của BccpHSC70-1 trong một giống chịu nhiệt (NHCC001) cao hơn so với các giống khác (NHCC002 và NHCC004) trong quá trình phát triển. Mức độ biểu hiện cao của BccpHSC70-2 trong lá có thể được giải thích bởi thực tế rằng các chất diệp lục nhạy cảm với căng thẳng nhiệt, và gen này có thể là một ứng cử viên cho việc phát triển các giống cải ngọn không đắm có khả năng chịu nhiệt. Biểu hiện của BcmtHSC70-2 có thể được kích thích dưới căng thẳng nhiệt. Biểu hiện của BcHSC70s trong dòng vô trùng cho thấy rằng nó đóng một vai trò quan trọng trong quá trình chết tế bào trong sự phát triển của các cơ quan sinh sản.
Từ khóa
#HSP70 #BccpHSC70s #BcmtHSC70s #cải ngọn không đắm #khả năng chịu nhiệt #phát triển cơ quan sinh sảnTài liệu tham khảo
Arakawa A, Handa N, Shirouzu M, Yokoyama S (2011) Biochemical and structural studies on the high affinity of Hsp70 for ADP. Protein Sci. doi:10.1002/pro.663
Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545
Becker J, Walter W, Yan W, Craig EA (1996) Functional interaction of cytosolic hsp70 and DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol 16:4378–4386
Belyaeva NE, Schmitt F-J, Steffen R, Paschenko VZ, Riznichenko GY, Chemeris YK, Renger G, Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98:105–119
Bloch MA, Johnson KA (1995) Identification of a molecular chaperone in the eukaryotic flagellum and its localization to the site of microtubule assembly. J Cell Sci 108:3541–3545
Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32(1–2):191–222
Brown KW, Ryan RM, Creswell JD (2007) Mindfulness: theoretical foundations and evidence for its salutary effects. Psychol Inq 18:211–237
Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451
Camejo D, Rodríguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcón JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289
Chapple CR, Arano P, Bosch JL, De Ridder D, Kramer AE, Ridder AM (2004) Solifenacin appears effective and well tolerated in patients with symptomatic idiopathic detrusor overactivity in a placebo- and tolterodine- controlled phase 2 dose-finding study. Br J Urol Int 93:71–77
Cowan NJ, Lewis SA (2002) Type II chaperonins, prefolding and the tubulin-specific chaperones. Adv Protein Chem 59:73–104
Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21
Dafny-Yelin M, Guterman I, Menda N,et al(2005) Flowerproteome: changes in protein spectrum during the advanced stages ofrose petal development.Planta222:37–46
Deng H, Bao X, Zhang W, Girton J, Johansen J, Johansen KM (2007) Reduced levels of Su(var)3-9 but not Su(var)2-5 (HP1) counteract the effects on chromatin structure and viability in loss-of-function mutants of the JIL-1 histone H3S10 kinase. Genetics 177(1):79–87
Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras GK, Greengard P, Xu HX (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 100:721–726
Ehlers JD, Hall AE (1998) Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Res 55:11–21
Frugis G, Mele G, Giannino D, Mariotti D (1999) MsJ1, an alfalfa DNaJ-like gene, is tissue-specific and transcriptionally regulated during cell cycle. Plant Mol Biol 40:397–408
Gromoff ED, Treier U, Beck CF (1989) Three light-inducible heat shock genes of Chlamydomonas reinhardtii. Mol Cell Biol 9:3911–3918
Hartl FU, Hayer-Hart M (2002) Molecular chaperones in the cytosol from nascent chain to folded protein. Science 295:1852–1858
Ireland HE, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Riomarkers 9:139–155
Ishioka S, Ezaka Y, Umemura K, Hayashi T, Endo T, Saito T (2006) Proteomic analysis of mechanisms of hypoxia-induced apoptosis in trophoblastic cells. Int J Med Sci 4(1):36–44
Jiang J, Prasad K, Lafer EM, Sousa R (2005) Structural basis of interdomain communication in the Hsc 70 chaperone. Mol Cell 20:513–524
Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592
Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47:565–577
Kristensen TN, Dahlgaard J, Loeschcke V (2002)Inbreeding affects the Hsp70 expression level in two speciesofDrosophilaeven at benign temperatures. Evol Ecol Res 4:1209–1216
Larkindale JJ, Hall D, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897
Lee CP, Eubel H, O’Toole N, Millar AH (2008) Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism. Mol Cell Proteomics 7:1297–1316
Li S, Wan CX, Kong J, Zhang ZJ, Li YS, Zhu YG (2004) Programmed cell death during microgenesis in Honglian CMS line of rice is correlated with oxidative stress in mitochondria. Funct Plant Biol 31(4):369–376
Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 3:201–208
Manceau V, Gavet O, Curmi P, Sobel A (1999) Stathmin interaction with HSC70 family proteins. Electrophoresis 20:409–417
Marchesi VT, Ngo N (1993) In vitro assembly of multiprotein complexes containing alpha, beta, and gamma tubulin, heat shock protein HSP70, and elongation factor 1 alpha. Proc Natl Acad Sci USA 90:3028–3032
Meimaridou E, Gooljar SB, Chapple JP (2009) From hatching to dispatching: the multiple cellular roles of Hsp70 molecular chaperone machinery. J Mol Endocrinol 42:1–9
Merchant S, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250
Mirus O, Schleiff E (2009) The evolution of tetratricopeptide repeat domain containing receptors involved in protein translocation. Endocytobiosis Cell Res 19:31–50
Moczko M et al (1995) The mitochondrial ClpB homolog Hsp78 cooperates with matrix Hsp70 in maintenance of mitochondrial function. J Mol Biol 254(4):538–543
Morejohn LC, Bureau TE, Mole-Bajer J, Bajer AS, Fosket DE (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252–264
Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ER (1999) High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. J Mol Biol 289:1387–1403
Muller FW, Igloi GL, Beck CF (1992) Structure of a gene encoding heat-shock protein HSP70 from the unicellular alga Chlamydomonas reinhardtii. Gene 111:165–173
Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862
Nordhues A, Miller SM, Mühlhaus T, Schroda M (2010) New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int Rev Cell Mol Biol 285:75–113
Oka M, Nakai M, Endo T, Lim CR, Kimata Y, Kohno K (1998) Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae. J Biol Chem 273:29727–29737
Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dillmann WH, Browne SE, Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007
Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133
Preisig-Muller R, Muster G, Kindl H (1994) Heat shock enhances the amount of prenylated Dnaj protein at membranes of glyoxysomes. Eur J Biochem 219:57–63
Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570
Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31(21):4221–4235
Renner T, Waters ER (2007) Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperones 12:172–185
Rochester DE, Winer JA, Shah DM (1986) The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J 5(3):451–458
Rutherford SL (2003) Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet 4:263–274
Sung DY, Kaplan F, Guy CL (2001) Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function. Physiol Plant 113:443–451
Von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457
Wang D, Zhang L, Zhao G, Wahlström G, Heino TI, Chen J, Zhang YQ (2010) Drosophila twinfilin is required for cell migration and synaptic endocytosis. J Cell Sci 123(9):1546–1556
Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berl) 82(8):488–499
Zhang XP, Glaser E (2002) Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci 7:14–21
Zhu Y, Hoell P, Ahlemeyer B, Krieglstein J (2006) PTEN: a crucial mediator of mitochondria-dependent apoptosis. Apoptosis 11:197–207