Zwitterionic form of Ugi amine H-phosphinic acid: Structure and electrochemical properties
Tài liệu tham khảo
Xue, 2016, Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations, Mater. Today, 19, 503, 10.1016/j.mattod.2016.03.003
Liu, 2010, Engineering homochiral metal−organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation, Adv. Mater., 22, 4112, 10.1002/adma.201000197
Gheorghe, 2018, Homochiral metal–organic frameworks as heterogeneous catalysts, Inorg. Chem. Front., 5, 1512, 10.1039/C8QI00063H
Ma, 2009, Enantioselective catalysis with homochiral metal–organic frameworks, Chem. Soc. Rev., 38, 1248, 10.1039/b807083k
Ma, 2010, A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis, Nat. Chem., 2, 838, 10.1038/nchem.738
Falkowski, 2014, Privileged phosphine-based metal–organic frameworks for broad-scope asymmetric catalysis, J. Am. Chem. Soc., 136, 5213, 10.1021/ja500090y
Wu, 2007, Heterogeneous asymmetric catalysis with homochiral metal–organic frameworks: network-structure-dependent catalytic activity, Angew. Chem. Int. Ed., 46, 1075, 10.1002/anie.200602099
Toma, 2014, Ferrocene phosphane-heteroatom/carbon bidentate ligands in asymmetric catalysis, Dalton Trans., 43, 16557, 10.1039/C4DT01784F
Štěpnička, 2017, Coordination and catalytic chemistry of phosphinoferrocene carboxamides, Coord. Chem. Rev., 353, 223, 10.1016/j.ccr.2017.10.003
Zhu, 2018, Ferrocene as a privileged framework for chiral organocatalysts, ChemCatChem, 10, 907, 10.1002/cctc.201701362
Cunningham, 2020, Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis, Org. Biomol. Chem., 18, 9329, 10.1039/D0OB01933J
Shekurov, 2019, Zn and Co redox active coordination polymers as efficient electrocatalysts, Dalton Trans., 48, 3601, 10.1039/C8DT04618B
Khrizanforova, 2020, 3D Ni and Co redox-active metal–organic frameworks based on ferrocenyl diphosphinate and 4,4′-bipyridine ligands as efficient electrocatalysts for the hydrogen evolution reaction, Dalton Trans., 49, 2794, 10.1039/C9DT04834K
Khrizanforov, 2019, Excellent supercapacitor and sensor performance of robust cobalt phosphinate ferrocenyl organic framework materials achieved by intrinsic redox and structure properties, Dalton Trans., 48, 16986, 10.1039/C9DT03592C
Shekurov, 2020, Synthesis, crystal structure and electrochemical properties of poly(cadmium 1,1′-ferrocenediyl-bis (H-phosphinate)), J. Organomet. Chem., 914, 121233, 10.1016/j.jorganchem.2020.121233
Shekurov, 2014, Synthesis and structure of ferrocenylphosphinic acids, J. Organomet. Chem., 766, 40, 10.1016/j.jorganchem.2014.04.035
Tebben, 2008, Ferrocene-derived bioorganometallic chemistry: preparation of a [3] ferrocenophane γ-amino acid for use in peptide synthesis, Organometallics, 27, 4269, 10.1021/om8004542