Zwitterionic form of Ugi amine H-phosphinic acid: Structure and electrochemical properties

Electrochemistry Communications - Tập 126 - Trang 107019 - 2021
Mikhail Khrizanforov1, Ruslan Shekurov1, Almaz Zagidullin1, Tatiana Gerasimova1, Kamil Ivshin1, Olga Kataeva1, Vasily Miluykov1
1Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, Russia

Tài liệu tham khảo

Xue, 2016, Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations, Mater. Today, 19, 503, 10.1016/j.mattod.2016.03.003 Liu, 2010, Engineering homochiral metal−organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation, Adv. Mater., 22, 4112, 10.1002/adma.201000197 Gheorghe, 2018, Homochiral metal–organic frameworks as heterogeneous catalysts, Inorg. Chem. Front., 5, 1512, 10.1039/C8QI00063H Ma, 2009, Enantioselective catalysis with homochiral metal–organic frameworks, Chem. Soc. Rev., 38, 1248, 10.1039/b807083k Ma, 2010, A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis, Nat. Chem., 2, 838, 10.1038/nchem.738 Falkowski, 2014, Privileged phosphine-based metal–organic frameworks for broad-scope asymmetric catalysis, J. Am. Chem. Soc., 136, 5213, 10.1021/ja500090y Wu, 2007, Heterogeneous asymmetric catalysis with homochiral metal–organic frameworks: network-structure-dependent catalytic activity, Angew. Chem. Int. Ed., 46, 1075, 10.1002/anie.200602099 Toma, 2014, Ferrocene phosphane-heteroatom/carbon bidentate ligands in asymmetric catalysis, Dalton Trans., 43, 16557, 10.1039/C4DT01784F Štěpnička, 2017, Coordination and catalytic chemistry of phosphinoferrocene carboxamides, Coord. Chem. Rev., 353, 223, 10.1016/j.ccr.2017.10.003 Zhu, 2018, Ferrocene as a privileged framework for chiral organocatalysts, ChemCatChem, 10, 907, 10.1002/cctc.201701362 Cunningham, 2020, Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis, Org. Biomol. Chem., 18, 9329, 10.1039/D0OB01933J Shekurov, 2019, Zn and Co redox active coordination polymers as efficient electrocatalysts, Dalton Trans., 48, 3601, 10.1039/C8DT04618B Khrizanforova, 2020, 3D Ni and Co redox-active metal–organic frameworks based on ferrocenyl diphosphinate and 4,4′-bipyridine ligands as efficient electrocatalysts for the hydrogen evolution reaction, Dalton Trans., 49, 2794, 10.1039/C9DT04834K Khrizanforov, 2019, Excellent supercapacitor and sensor performance of robust cobalt phosphinate ferrocenyl organic framework materials achieved by intrinsic redox and structure properties, Dalton Trans., 48, 16986, 10.1039/C9DT03592C Shekurov, 2020, Synthesis, crystal structure and electrochemical properties of poly(cadmium 1,1′-ferrocenediyl-bis (H-phosphinate)), J. Organomet. Chem., 914, 121233, 10.1016/j.jorganchem.2020.121233 Shekurov, 2014, Synthesis and structure of ferrocenylphosphinic acids, J. Organomet. Chem., 766, 40, 10.1016/j.jorganchem.2014.04.035 Tebben, 2008, Ferrocene-derived bioorganometallic chemistry: preparation of a [3] ferrocenophane γ-amino acid for use in peptide synthesis, Organometallics, 27, 4269, 10.1021/om8004542