Zno/NiO coated multi-walled carbon nanotubes for textile dyes degradation
Tài liệu tham khảo
Abu-Ghoush, 2017, Application of mid-infrared spectroscopy and PLS-Kernel calibration for quick detection of pork in higher value meat mixes, J. Food Meas. Charact., 11, 337, 10.1007/s11694-016-9402-4
Alemi, 2011, Synthesis and characterization of Sb2S3 nanorods via complex decomposition approach, J. Nanomater., 46
Alexander, 1950, Determination of crystallite size with the X-Ray spectrometer, J. Appl. Phys., 21, 137, 10.1063/1.1699612
Al-Kdasi, 2004, Treatment of textile wastewater by advance oxidation processes, Glob. NEST J., 6, 222
An, 2007, Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation, Carbon, 45, 1795, 10.1016/j.carbon.2007.04.034
Aneesh, P.M., Vanaja, K.A., Jayaraj, M.K., 2007. Synthesis of ZnO nanoparticles by hydrothermal method 66390J. 10.1117/12.730364.
Anjaneyulu, 2005, Decolourization of industrial effluents–available methods and emerging technologies–a review, Rev. Environ. Sci. Biotechnol., 4, 245, 10.1007/s11157-005-1246-z
Arabatzis, 2003, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation, J. Catal., 220, 127, 10.1016/S0021-9517(03)00241-0
Aslam, 2017, Evaluation of cosmetics for their potential contaminants and drug resistant microorganisms, Acta Sci. Malaysia, 1, 16, 10.26480/asm.02.2017.16.19
Aziz, 2017, The Potential of Palm Oil Mill Effluent (POME) as a renewable energy source, Acta Sci. Malaysia, 1, 09, 10.26480/asm.02.2017.09.11
Banat, 1996, Microbial decolorization of textile-dyecontaining effluents: a review, Bioresour. Technol., 58, 217, 10.1016/S0960-8524(96)00113-7
Chen, 2011, Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution, Nanoscale Res. Lett., 6, 398, 10.1186/1556-276X-6-398
Chen, C.S., Chen, X.H., Yi, B., Liu, T.G., Li, W.H., Xu, L.S., Yang, Z., Zhang, H., Wang, Y.G., 2006. Zinc oxide nanoparticle decorated multi-walled carbon nanotubes and their optical properties. Acta Mater. 54, 5401–5407 10.1016/j.actamat.2006.07.003.
Chen, C.S., Liu, T.G., Lin, L.W., Xie, X.D., Chen, X.H., Liu, Q.C., Liang, B., Yu, W.W., Qiu, C.Y., 2013. Multi-walled carbon nanotube-supported metal-doped ZnO nanoparticles and their photocatalytic property. J. Nanoparticle Res. 15 10.1007/s11051-012-1295-5.
Chen, C.S., Xie, X.D., Liu, T.G., Lin, L.W., Kuang, J.C., Xie, X.L., Lu, L.J., Cao, S.Y., 2012. Multi-walled carbon nanotubes supported Cu-doped ZnO nanoparticles and their optical property. J. Nanoparticle Res. 14 10.1007/s11051-012-0817-5.
Chen, X.H., Chen, C.S., Chen, Q., Cheng, F.Q., Zhang, G., Chen, Z.Z., 2002. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Mater. Lett. 57, 734–738 10.1016/S0167-577X(02)00863-7.
Cofino, 1989, Methodology of chemical monitoringin the marine environment, Helgol/inder Meeresunters, 43, 295, 10.1007/BF02365890
De’nan, 2017, Finite element analysis on lateral torsional buckling behaviour Oi I-beam with web opening, Eng. Herit. J., 1, 19, 10.26480/gwk.02.2017.19.22
Deng, 2016, Angew. Chem. – Int. Ed., 55, 6295, 10.1002/anie.201601061
Duchin, F., Wood, C.H., Porro, R., 2003. 276 Book reviews 276–277 10.1016/j.ecolecon.2003.08.002.
Gerard Lavin, 2002, Scrolls and nested tubes in multiwall carbon nanotubes, Carbon, 40, 1123, 10.1016/S0008-6223(02)00050-7
Goldstein, 1980, Determination of the Fe-Ni and Fe-Ni-P phase diagrams at low temperatures (700 to 300 °C), Metall. Trans. A, 11, 1151, 10.1007/BF02668139
Gómez-Carrasco, 2007, Transition state spectroscopy of open shell systems: angle-resolved photodetachment spectra for the adiabatic singlet states of OHF, J. Photochem. Photobiol., A, 190, 145, 10.1016/j.jphotochem.2007.01.027
Gouvêa, 2000, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere, 40, 433, 10.1016/S0045-6535(99)00313-6
Gültekin, 2014, Synthesis and characterisations of Au-nanoparticle-doped TiO2 and CdO thin films, J. Phys. Chem. Solids, 75, 775, 10.1016/j.jpcs.2014.01.011
Gunawan, 2011, Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts, US Natl. Libr. Med. Nat. Inst. Health, 5, 7214
Guo, 2014, Mechanical properties of nanoparticles:basics and applications, J. Phys. D Appl. Phys., 47, 13001, 10.1088/0022-3727/47/1/013001
Halim, 2017, Comparison between measured traffic noise in Klang valley, Malaysia and existing prediction models, Eng. Herit. J., 1, 10, 10.26480/gwk.02.2017.10.14
Harlang, 2015, Iron sensitizer converts light to electrons with 92% yield, Nat. Chem., 7, 883, 10.1038/nchem.2365
Hassan, 2017, Literature review for the development of Dikes's breach channel mechanism caused by erosion processes during oovertopping failure, Eng. Herit. J., 1, 23, 10.26480/gwk.02.2017.23.30
Hester, 2007, Interests and neonates: there is more to the story than we explicitly acknowledge, Theor. Med. Bioeth., 28, 357, 10.1007/s11017-007-9048-7
Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004
Ismail, 2017, Management of end-of-life electrical and electronic products: the challenges and the potential solutions for management enhancement in developing countries context, Acta Sci. Malaysia, 1, 05, 10.26480/asm.02.2017.05.08
Jiang, 2005, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity, Mater. Chem. Phys., 91, 313, 10.1016/j.matchemphys.2004.11.028
Jones, 1992, ITS-90 density of water formulation for volumetric standards calibration, J. Res. Nat. Inst. Stand. Technol., 97, 335, 10.6028/jres.097.013
Khan, 2017, Comparative diagnosis of typhoid fever by polymerase chain reaction and widal test in Southern Districts (Bannu, Lakki Marwat and D.I.Khan) of Khyber Pakhtunkhwa, Pakistan, Acta Sci. Malaysia, 1, 12, 10.26480/asm.02.2017.12.15
Khataee, 2010, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes, J. Mol. Catal. A: Chem., 328, 8, 10.1016/j.molcata.2010.05.023
Khatri, 2012, 299
Khodja, 2001, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, J. Photochem. Photobiol., A, 141, 231, 10.1016/S1010-6030(01)00423-3
Krishnakanth, 2016, Structural and magnetic properties of NiO and Fe-doped NiO nanoparticles synthesized by chemical Co-precipitation method, Mater. Today: Proc., 3, 1370, 10.1016/j.matpr.2016.04.017
Kumar, 2008, Langmuir-Hin shelwood kinetics—a theoretical study, Catal. Commun., 9, 82, 10.1016/j.catcom.2007.05.019
Li, 2017, Photocatalytic activities enhanced by au-plasmonic nanoparticles on TiO2 nanotube photoelectrode coated with MoO3, Nanoscale Res. Lett., 12, 560, 10.1186/s11671-017-2327-y
Li, 2007, Preparation and characterization of NiO nanoparticles through calcination of malate gel, Mater. Lett., 61, 1615, 10.1016/j.matlet.2006.07.113
Li, 1999, Two competitive primary processes in the photodegradation of cationic triarylmethane dyes under visible irradiation in TiO2 dispersions, New J. Chem., 23, 1193, 10.1039/a906765e
Liao, 2008, Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange, J. Photochem. Photobiol., A, 194, 11, 10.1016/j.jphotochem.2007.07.008
Lu, 2005, Glow discharge induced hydroxyl radical degradation 2-naphthylamine, Plasma Sci. Technol, 7, 2856, 10.1088/1009-0630/7/3/017
Ma, 2014, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chin. J. Catal., 35, 108, 10.1016/S1872-2067(12)60720-7
Maeda, 2011, Photocatalytic water splitting using semiconductor particles: history and recent developments, J. Photochem. Photobiol., C, 12, 237, 10.1016/j.jphotochemrev.2011.07.001
Mahmoodi, 2014, Binary catalyst system dye degradation using photocatalysis, Fibers Polym., 15, 273, 10.1007/s12221-014-0273-1
Mahmoodi, 2006, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci., 295, 159, 10.1016/j.jcis.2005.08.007
Miao, 2008, Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode, J. Electroanal. Chem., 612, 157, 10.1016/j.jelechem.2007.09.026
Mitróová, Z., Tomašovičová, N., Lancz, G., Kovač, J., Vávra, I., Kopčanský, P., 2010. Preparation and characterization of carbon nanotubes functionalized by magnetite nanoparticles 10–15.
Morales-Torres, 2012, Design of graphene-based TiO2 photocatalysts—a review, Environ. Sci. Pollut. Res., 19, 3676, 10.1007/s11356-012-0939-4
Murphy, 2014, Minority carrier lifetime in silicon photovoltaics: the effect of oxygen precipitation, Sol. Energy Mater. Sol. Cells, 120, 402, 10.1016/j.solmat.2013.06.018
Murphy, 2013, Organic photovoltaics with thick active layers (∼800nm) using a high mobility polymer donor, Sol. Energy Mater. Sol. Cells, 114, 71, 10.1016/j.solmat.2013.02.033
Nordin, 2017, Pcb biodegration using bacteria isolated from landfill leachate, Sci. Herit. J., 1, 8
O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Lett. Nat., 353, 737, 10.1038/353737a0
Okamoto, 2013, Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly, J. Biol. Chem., 288, 36236, 10.1074/jbc.M113.506741
Ongley, 1992, Cohesive sediment transport: emerging issues for toxic chemical management, Hydrobiologia, 235, 177, 10.1007/BF00026210
Percherancier, 1995, Semiconductor-sensitized photodegradation of pesticides in water: the case of carbetamide, J. Photochem. Photobiol., A, 87, 261, 10.1016/1010-6030(94)03993-5
Pirkarami, 2017, Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism, J. Saudi Chem. Soc., 21, S179, 10.1016/j.jscs.2013.12.008
Poulios, 1998, Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions, J. Photochem. Photobiol., A, 115, 175, 10.1016/S1010-6030(98)00259-7
Rahman, 2017, Validation of microscopic dynamics of grouping pedestrians behavior: from observation to modeling and simulation, Eng. Herit. J., 1, 15, 10.26480/gwk.02.2017.15.18
Rajamanickam, 2014, Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts, Spectrochim. Acta – Part A: Mol. Biomol. Spectrosc., 128, 100, 10.1016/j.saa.2014.02.126
Rauf, 2009, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J., 151, 10, 10.1016/j.cej.2009.02.026
Rauf, 2007, The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5//TiO2, Chem. Eng. J., 129, 167, 10.1016/j.cej.2006.10.031
Razali, 2017, Noise exposure during orthopaedics surgery, Sci. Herit. J., 1, 12, 10.26480/gws.02.2017.32.33
Razali, 2017, Cytotoxicity on Mcf7 cell lines exposed to an extract of the jacalin from jackfruit seed, Sci. Herit. J., 1, 14
Rohman, 2011, Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy, Meat Sci., 88, 91, 10.1016/j.meatsci.2010.12.007
Roslan, 2017, High-quality Dna from peat soil for metagenomic studies: a minireview on Dna extraction methods, Sci. Herit. J., 1, 1, 10.26480/gws.02.2017.01.06
Sahel, 2007, Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B—isotherm of adsorption, kinetic of decolorization and mineralization, Appl. Catal. B, 77, 100, 10.1016/j.apcatb.2007.06.016
Saleh, 2014, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlatt. Microstruct., 74, 217, 10.1016/j.spmi.2014.06.013
Sanromán, 2004, Electrochemical decolourisation of structurally different dyes, Chemosphere, 57, 233, 10.1016/j.chemosphere.2004.06.019
Sarangi, 2007, Sulfur K-edge X-ray absorption spectroscopy as a probe of ligand−metal bond covalency: metal vs ligand oxidation in copper and nickel dithiolene complexes, J. Am. Chem. Soc., 129, 2316, 10.1021/ja0665949
Solár, 2016, The Socioeconomic and environmental effects of sustainable development in the Eastern Carpathians, and protecting its environment, Polish J. Environ. Stud., 25, 291, 10.15244/pjoes/60177
Soni, 2013, Decolourization and mineralization of reactive Black-5 with transition metal oxide coated electrodes by electrochemical oxidation, Procedia Eng., 51, 335, 10.1016/j.proeng.2013.01.046
Srinivasan, 2000, Bioprocess. Eng., 22, 0267, 10.1007/s004490050731
Struve, W., Mills, I., 1990. Fundamentals of Molecular Spectroscopy. Wiley, New York, Chichester, 1, pp. 379.
Suchithra, 2015, A hybridization approach to efficient TiO2 photodegradation of aqueous benzalkonium chloride, J. Hazard. Mater., 293, 122, 10.1016/j.jhazmat.2015.03.011
Talam, 2012, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles, ISRN Nanotechnol., 2012, 1, 10.5402/2012/372505
Teo, 2003, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, J. Vac. Sci. Technol., B, 21, 693, 10.1116/1.1545755
Tong, 2003, Novel rhodium-catalyzed cycloisomerization of 1,6-enynes with an intramolecular halogen shift, J. Am. Chem. Soc., 6370, 10.1021/ja034096j
Wang, Hui, Xiang, Xu, Li, F., 2010. Hybrid ZnAl-LDH/CNTs nanocomposites: noncovalent assembly and enhanced photodegradation performance. AIChE J. 56, 3–194 10.1002/aic.
Wang, 2017, Solution dynamics and gas-phase chemistry of Pd2@Sn184−, Chem. Commun, 9
Xie, 2012, Facile low-temperature synthesis of carbon nanotube/TiO2 nanohybrids with enhanced visible-light-driven photocatalytic activity, Int. J. Photoenergy, 2012, 1, 10.1155/2012/682138
Xu, 2009, Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance, Chem. Mater., 21, 1253, 10.1021/cm802915m
Xu, 2002, Labile coordination dendrimers, Chem. Commun., 78, 10.1039/b107658m
Yadav, 2016, Enhanced visible light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol–gel method, J. Mater. Sci.: Mater. Electron., 27, 526
Yao, 2005, Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process, J. Phys. Chem. B, 109, 14011, 10.1021/jp0517605
Yeber, 1999, dvanced oxidation of a pulp mill bleaching wastewater, Chemosphere, 39, 1679, 10.1016/S0045-6535(99)00068-5
Yin, 2005, Copper oxide nanocrystals, J. Am. Chem. Soc., 127, 9506, 10.1021/ja050006u
Zhang, 2016, A generic wet impregnation method for preparing substrate-supported platinum group metal and alloy nanoparticles with controlled particle morphology, Nano Lett., 16, 164, 10.1021/acs.nanolett.5b04518
Zhao, 2005, Photocatalytic degradation of organic pollutants under visible light irradiation, Top. Catal., 35, 269, 10.1007/s11244-005-3834-0
Zhao, 1993, Photodegration of surfactants, potential measurements in the photocatalytic oxidation of surfactants in aqueous TiO2 dispersions, Langmuir, 9, 1646, 10.1021/la00031a008
Zhao, 1998, Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine b under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B, 102, 5845
Zhao, 2004, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation, J. Am. Chem. Soc., 126, 4782, 10.1021/ja0396753