ZnSe nanoribbon-Si nanowire crossed p-n nano-heterojunctions: Electrical characterizations and photovoltaic applications

Solar Energy Materials and Solar Cells - Tập 176 - Trang 411-417 - 2018
Xiwei Zhang1, Di Wu2, Dan Hu1, Zhenjie Tang1, Huijuan Geng1, Junlong Tian1, Jiansheng Jie3
1College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000, PR China
2Department of Physics and Engineering, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou, Henan 450052, PR China
3Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China

Tài liệu tham khảo

Li, 2006, Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors, Nano Lett., 6, 1468, 10.1021/nl060849z Zhang, 2013, ZnSe nanowire/Si p–n heterojunctions: device construction and optoelectronic applications, Nanotechnology, 24, 395201, 10.1088/0957-4484/24/39/395201 Wang, 2010, Coaxial ZnSe/Si nanocables with controlled p-type shell doping, Nanotechnology, 21, 285206, 10.1088/0957-4484/21/28/285206 Cheng, 2003, Current rectification in a single GaN nanowire with a well-defined p–n junction, Appl. Phys. Lett., 83, 1578, 10.1063/1.1604190 Lauhon, 2002, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 420, 57, 10.1038/nature01141 Tang, 2011, Solution-processed core–shell nanowires for efficient photovoltaic cells, Nat. Nanotechnol., 6, 568, 10.1038/nnano.2011.139 Zhang, 2017, Efficient photovoltaic devices based on p-ZnSe/n-CdS core–shell heterojunctions with high open-circuit voltage, J. Mater. Chem. C, 5, 2107, 10.1039/C6TC04960E Wang, 2014, Nearly lattice matched all wurtzite CdSe/ZnTe type II core–shell nanowires with epitaxial interfaces for photovoltaics, Nanoscale, 6, 3679, 10.1039/C3NR06137J Sun, 2016, High-sensitivity and self-driven photodetectors based on Ge–CdS core–shell heterojunction nanowires via atomic layer deposition, CrystEngComm, 18, 3919, 10.1039/C6CE00576D Bie, 2011, Self‐powered, ultrafast, visible‐blind UV detection and optical logical operation based on ZnO/GaN nanoscale p‐n junctions, Adv. Mater., 23, 649, 10.1002/adma.201003156 Liu, 2010, High-efficiency color tunable n-CdSxSe1−x/p+-Si parallel-nanobelts heterojunction light-emitting diodes, J. Mater. Chem., 20, 5011, 10.1039/c0jm00667j Wu, 2017, Two-terminal nonvolatile resistive switching memory devices based on n-CdSe NR/p-Si heterojunctions, J. Alloy. Compd., 695, 1653, 10.1016/j.jallcom.2016.10.312 Kempa, 2012, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics, Proc. Natl. Acad. Sci., 109, 1407, 10.1073/pnas.1120415109 Hoffmann, 2009, Axial pn junctions realized in silicon nanowires by ion implantation, Nano Lett., 9, 1341, 10.1021/nl802977m Mahawela, 2005, II–VI compounds as the top absorbers in tandem solar cell structures, Mater. Sci. Eng: B, 116, 283, 10.1016/j.mseb.2004.05.054 Ren, 1990, ZnSe light‐emitting diodes, Appl. Phys. Lett., 57, 1901, 10.1063/1.104006 Leung, 2006, Synthesis of wurtzite ZnSe nanorings by thermal evaporation, Appl. Phys. Lett., 88, 183110, 10.1063/1.2200155 Zhang, 2016, Bismuth-catalyzed and doped p-type ZnSe nanowires and their temperature-dependent charge transport properties, J. Mater. Chem. C, 4, 857, 10.1039/C5TC02853A Zhang, 2016, Nanoscale p–n junctions based on p-type ZnSe nanowires and their optoelectronic applications, Mater. Lett., 168, 121, 10.1016/j.matlet.2016.01.044 Zhang, 2012, ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes, J. Mater. Chem., 22, 22873, 10.1039/c2jm34720b Nie, 2013, Fabrication of p-type ZnSe: Sb nanowires for high-performance ultraviolet light photodetector application, Nanotechnology, 24, 095603, 10.1088/0957-4484/24/9/095603 Xie, 2012, Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions, Appl. Phys. Lett., 100, 193103, 10.1063/1.4711205 Vinaji, 2009, Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy, Nanotechnology, 20, 385702, 10.1088/0957-4484/20/38/385702 Kılıçoglu, 2008, Effect of an organic compound (Methyl Red) interfacial layer on the calculation of characteristic parameters of an Al/Methyl Red/p-Si sandwich Schottky barrier diode, Thin Solid Films, 516, 967, 10.1016/j.tsf.2007.06.022 Tuan, 2015, Temperature-dependent electrical properties of the sputtering-made n‐InGaN/p‐GaN junction diode with a breakdown voltage above 20V, Mater. Sci. Semicond. Process., 32, 160, 10.1016/j.mssp.2015.01.011 Das, 2016, Temperature-dependent electrical characteristics of CBD/CBD grown n-ZnO nanowire/p-Si heterojunction diodes, J. Phys. D: Appl. Phys., 49, 145105, 10.1088/0022-3727/49/14/145105 Kumar, 2013, Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation, Nanoscale Res. Lett., 8, 481, 10.1186/1556-276X-8-481 Rafiq, 2005, Charge injection and trapping in silicon nanocrystals, Appl. Phys. Lett., 87, 182101, 10.1063/1.2119431 Koehler, 1999, Charge injection into thin conjugated polymer films, Phys. Status Solidi A, 173, 29, 10.1002/(SICI)1521-396X(199905)173:1<29::AID-PSSA29>3.0.CO;2-J Kalita, 2003, Space charge limited conduction in CdSe thin films, Bull. Mater. Sci., 26, 613, 10.1007/BF02704325 Gu, 2006, Space-charge-limited current in nanowires depleted by oxygen adsorption, Appl. Phys. Lett., 89, 143102, 10.1063/1.2358316 Wu, 2011, Construction of high-quality CdS:Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications, Nanotechnology, 22, 405201, 10.1088/0957-4484/22/40/405201 Xie, 2012, p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors, CrystEngComm, 14, 7222, 10.1039/c2ce25791b