ZnSe nanoribbon-Si nanowire crossed p-n nano-heterojunctions: Electrical characterizations and photovoltaic applications
Tài liệu tham khảo
Li, 2006, Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors, Nano Lett., 6, 1468, 10.1021/nl060849z
Zhang, 2013, ZnSe nanowire/Si p–n heterojunctions: device construction and optoelectronic applications, Nanotechnology, 24, 395201, 10.1088/0957-4484/24/39/395201
Wang, 2010, Coaxial ZnSe/Si nanocables with controlled p-type shell doping, Nanotechnology, 21, 285206, 10.1088/0957-4484/21/28/285206
Cheng, 2003, Current rectification in a single GaN nanowire with a well-defined p–n junction, Appl. Phys. Lett., 83, 1578, 10.1063/1.1604190
Lauhon, 2002, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 420, 57, 10.1038/nature01141
Tang, 2011, Solution-processed core–shell nanowires for efficient photovoltaic cells, Nat. Nanotechnol., 6, 568, 10.1038/nnano.2011.139
Zhang, 2017, Efficient photovoltaic devices based on p-ZnSe/n-CdS core–shell heterojunctions with high open-circuit voltage, J. Mater. Chem. C, 5, 2107, 10.1039/C6TC04960E
Wang, 2014, Nearly lattice matched all wurtzite CdSe/ZnTe type II core–shell nanowires with epitaxial interfaces for photovoltaics, Nanoscale, 6, 3679, 10.1039/C3NR06137J
Sun, 2016, High-sensitivity and self-driven photodetectors based on Ge–CdS core–shell heterojunction nanowires via atomic layer deposition, CrystEngComm, 18, 3919, 10.1039/C6CE00576D
Bie, 2011, Self‐powered, ultrafast, visible‐blind UV detection and optical logical operation based on ZnO/GaN nanoscale p‐n junctions, Adv. Mater., 23, 649, 10.1002/adma.201003156
Liu, 2010, High-efficiency color tunable n-CdSxSe1−x/p+-Si parallel-nanobelts heterojunction light-emitting diodes, J. Mater. Chem., 20, 5011, 10.1039/c0jm00667j
Wu, 2017, Two-terminal nonvolatile resistive switching memory devices based on n-CdSe NR/p-Si heterojunctions, J. Alloy. Compd., 695, 1653, 10.1016/j.jallcom.2016.10.312
Kempa, 2012, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics, Proc. Natl. Acad. Sci., 109, 1407, 10.1073/pnas.1120415109
Hoffmann, 2009, Axial pn junctions realized in silicon nanowires by ion implantation, Nano Lett., 9, 1341, 10.1021/nl802977m
Mahawela, 2005, II–VI compounds as the top absorbers in tandem solar cell structures, Mater. Sci. Eng: B, 116, 283, 10.1016/j.mseb.2004.05.054
Ren, 1990, ZnSe light‐emitting diodes, Appl. Phys. Lett., 57, 1901, 10.1063/1.104006
Leung, 2006, Synthesis of wurtzite ZnSe nanorings by thermal evaporation, Appl. Phys. Lett., 88, 183110, 10.1063/1.2200155
Zhang, 2016, Bismuth-catalyzed and doped p-type ZnSe nanowires and their temperature-dependent charge transport properties, J. Mater. Chem. C, 4, 857, 10.1039/C5TC02853A
Zhang, 2016, Nanoscale p–n junctions based on p-type ZnSe nanowires and their optoelectronic applications, Mater. Lett., 168, 121, 10.1016/j.matlet.2016.01.044
Zhang, 2012, ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes, J. Mater. Chem., 22, 22873, 10.1039/c2jm34720b
Nie, 2013, Fabrication of p-type ZnSe: Sb nanowires for high-performance ultraviolet light photodetector application, Nanotechnology, 24, 095603, 10.1088/0957-4484/24/9/095603
Xie, 2012, Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions, Appl. Phys. Lett., 100, 193103, 10.1063/1.4711205
Vinaji, 2009, Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy, Nanotechnology, 20, 385702, 10.1088/0957-4484/20/38/385702
Kılıçoglu, 2008, Effect of an organic compound (Methyl Red) interfacial layer on the calculation of characteristic parameters of an Al/Methyl Red/p-Si sandwich Schottky barrier diode, Thin Solid Films, 516, 967, 10.1016/j.tsf.2007.06.022
Tuan, 2015, Temperature-dependent electrical properties of the sputtering-made n‐InGaN/p‐GaN junction diode with a breakdown voltage above 20V, Mater. Sci. Semicond. Process., 32, 160, 10.1016/j.mssp.2015.01.011
Das, 2016, Temperature-dependent electrical characteristics of CBD/CBD grown n-ZnO nanowire/p-Si heterojunction diodes, J. Phys. D: Appl. Phys., 49, 145105, 10.1088/0022-3727/49/14/145105
Kumar, 2013, Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation, Nanoscale Res. Lett., 8, 481, 10.1186/1556-276X-8-481
Rafiq, 2005, Charge injection and trapping in silicon nanocrystals, Appl. Phys. Lett., 87, 182101, 10.1063/1.2119431
Koehler, 1999, Charge injection into thin conjugated polymer films, Phys. Status Solidi A, 173, 29, 10.1002/(SICI)1521-396X(199905)173:1<29::AID-PSSA29>3.0.CO;2-J
Kalita, 2003, Space charge limited conduction in CdSe thin films, Bull. Mater. Sci., 26, 613, 10.1007/BF02704325
Gu, 2006, Space-charge-limited current in nanowires depleted by oxygen adsorption, Appl. Phys. Lett., 89, 143102, 10.1063/1.2358316
Wu, 2011, Construction of high-quality CdS:Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications, Nanotechnology, 22, 405201, 10.1088/0957-4484/22/40/405201
Xie, 2012, p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors, CrystEngComm, 14, 7222, 10.1039/c2ce25791b