ZnO nanoparticles impact on the photosynthetic activity of Vicia faba: Effect of particle size and concentration
Tài liệu tham khảo
Adhikari, 2020, Assessment of ZnO-NPs toxicity in maize: an integrative microRNAomic approach, Chemosphere, 249, 10.1016/j.chemosphere.2020.126197
Asada, 2006, Radical production and scavenging in the chloroplasts, 123
Baker, 2004, Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, J. Exp. Bot., 55, 1607, 10.1093/jxb/erh196
Baker, 2008, Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol., 59, 89, 10.1146/annurev.arplant.59.032607.092759
Bala, 2019, Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice, J. Soil Sci. Plant Nutr., 19, 379, 10.1007/s42729-019-00040-z
Belkhodja, 1994, Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.), Plant Physiol., 104, 667, 10.1104/pp.104.2.667
Bulcke, 2013, Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes, Nanotoxicology, 1, 10.3109/17435390.2013.829591
Capaldi Arruda, 2015, Nanoparticles applied to plant science: a review, Talanta, 131, 693, 10.1016/j.talanta.2014.08.050
Chaerle, 2000, Imaging techniques and the early detection of plant stress, Trends Plant Sci., 5, 495, 10.1016/S1360-1385(00)01781-7
Chen, 2018, Time matters: the toxicity of zinc oxide nanoparticles to Lemna minor L. increases with exposure time, Water Air Soil Pollut., 229, 99, 10.1007/s11270-018-3759-4
De La Torre-Roche, 2013, Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean), Environ. Sci. Technol., 47, 718, 10.1021/es3041829
Edreva, 2005, Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach, Agric. Ecosyst. Environ., 106, 119, 10.1016/j.agee.2004.10.022
Ewais, 2017, Vegetative growth, photosynthetic pigments and yield of Phaseolus vulgaris (L.) plants in response to the application of biologically-synthesized zinc oxide nanoparticles and zinc sulfate, Al Azhar Bull. Sci., 9, 33
Falco, 2020, Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange, Sci. Total Environ., 701, 10.1016/j.scitotenv.2019.134816
Fiandra, 2020, Hazard assessment of polymer-capped CuO and ZnO nanocolloids: a contribution to the safe-by-design implementation of biocidal agents, NanoImpact, 17, 10.1016/j.impact.2019.100195
Girotto, 2013, Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry, Ecotoxicol. Environ. Saf., 93, 145, 10.1016/j.ecoenv.2013.03.021
Gottschalk, 2009, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol., 43, 9216, 10.1021/es9015553
Gowayed, 2015, Influence of zinc oxide nanoparticles on cadmium toxicity on germination of faba bean (Vicia faba L.), J. Plant Prod. Sci., 4, 21
Gowayed, 2016, Effect of zinc oxide nanoparticles on antioxidative system of Faba bean (Vicia faba L) seedling exposed to cadmium, Life Sci. J., 13, 18
Hacker, 2007, Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA), Tree Physiol., 27, 1661, 10.1093/treephys/27.12.1661
Iftikhar, 2019, Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress, Environ. Pollut., 254, 10.1016/j.envpol.2019.113109
Jiang, 2009, Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut., 157, 1619, 10.1016/j.envpol.2008.12.025
Klaine, 2008, Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1
Krause, 1991, Chlorophyll fluorescence and photosynthesis: the basics, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313, 10.1146/annurev.pp.42.060191.001525
Krumova, 2016, Chapter 1. Overview of reactive oxygen species, 1
Lawson, 2008, Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2, J. Exp. Bot., 59, 3609, 10.1093/jxb/ern211
Leme, 2009, Allium cepa test in environmental monitoring: a review on its application, Mutat. Res. - Rev. Mutat. Res., 682, 71, 10.1016/j.mrrev.2009.06.002
Lichtenthaler, 1997, Fluorescence imaging as a diagnostic tool for plant stress, Trends Plant Sci., 2, 316, 10.1016/S1360-1385(97)89954-2
Lovern, 2007, Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, Nano-C 60, and C 60 HxC 70 Hx), Environ. Sci. Technol., 41, 4465, 10.1021/es062146p
Lowry, 2008, Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation, J. Coatings Technol. Res., 5, 233, 10.1007/s11998-007-9064-6
Luo, 2014, Reducing ZnO nanoparticle cytotoxicity by surface modification, Nanoscale, 6, 5791, 10.1039/C4NR00458B
Ma, 2013, Ecotoxicity of manufactured ZnO nanoparticles – a review, Environ. Pollut., 172, 76, 10.1016/j.envpol.2012.08.011
Mahmoud, 2019, Molecular and cytogenetic assessment of zinc nanoparticles on Vicia faba plant cells, Egypt. J. Exp. Biol., 15
Malea, 2019, Zinc uptake, photosynthetic efficiency and oxidative stress in the seagrass Cymodocea nodosa exposed to ZnO nanoparticles, Materials (Basel), 12, 2101, 10.3390/ma12132101
McAusland, 2013, A novel system for spatial and temporal imaging of intrinsic plant water use efficiency, J. Exp. Bot., 64, 4993, 10.1093/jxb/ert288
Mueller, 2008, Exposure modeling of engineered nanoparticles in the environment, Environ. Sci. Technol., 42, 4447, 10.1021/es7029637
Murchie, 2013, Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications, 64, 3983
Nadi, 2013, Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba bean (Vicia faba L.), Int. J. Biosci., 3, 267, 10.12692/ijb/3.9.267-272
Pandey, 2018, Nanopesticides: opportunities in crop protection and associated environmental risks, Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 88, 1287, 10.1007/s40011-016-0791-2
Prakash, 2016, Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings, Acta Biol. Hung., 67, 286, 10.1556/018.67.2016.3.6
Quina, 2004, Nanotecnologia e o meio ambiente: perspectivas e riscos, Quim Nova, 27, 1028, 10.1590/S0100-40422004000600031
Rastogi, 2017, Impact of metal and metal oxide nanoparticles on plant: a critical review, Front. Chem., 5, 10.3389/fchem.2017.00078
Rastogi, 2019, Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast, Photosynthetica, 57, 209, 10.32615/ps.2019.019
Reed, 2012, Solubility of nano-zinc oxide in environmentally and biologically important matrices, Environ. Toxicol. Chem., 31, 93, 10.1002/etc.708
Rossi, 2019, Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants, Plant Physiol. Biochem., 135, 160, 10.1016/j.plaphy.2018.12.005
Sadauskas, 2007, Kupffer cells are central in the removal of nanoparticles from the organism, Part. Fibre Toxicol., 4, 10, 10.1186/1743-8977-4-10
Scherer, 2019, Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence, Sci. Total Environ., 660, 459, 10.1016/j.scitotenv.2018.12.444
Servin, 2016, Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk, NanoImpact, 1, 9, 10.1016/j.impact.2015.12.002
Singh, 2018, Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings, Environ. Nanotechnology, Monit. Manag., 9, 42, 10.1016/j.enmm.2017.11.006
Singh, 2018, Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants, J. Mater. Sci., 53, 185, 10.1007/s10853-017-1544-1
Sirelkhatim, 2015, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Lett, 7, 219, 10.1007/s40820-015-0040-x
Stoimenov, 2002, Metal oxide nanoparticles as bactericidal agents, Langmuir, 18, 6679, 10.1021/la0202374
Sugantharaj David, 2017, Toxicity, uptake, and accumulation of nano and bulk cerium oxide particles in Artemia salina, Environ. Sci. Pollut. Res., 24, 24187, 10.1007/s11356-017-9975-4
Tripathi, 2017, Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle, Front. Plant Sci., 8, 10.3389/fpls.2017.00001
Velicogna, 2020, Phytotoxicity of copper oxide nanoparticles in soil with and without biosolid amendment, NanoImpact, 17, 10.1016/j.impact.2019.100196
Wang, 2006, Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice, Toxicol. Lett., 161, 115, 10.1016/j.toxlet.2005.08.007
Wang, 2018, Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants, Biol. Plant., 62, 801, 10.1007/s10535-018-0813-4
Youssef, 2020, Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba, Environ. Sci. Pollut. Res., 27, 18972, 10.1007/s11356-018-3250-1