ZnO nanoparticles impact on the photosynthetic activity of Vicia faba: Effect of particle size and concentration

NanoImpact - Tập 19 - Trang 100246 - 2020
Danielle P. Pedruzzi1,2, Leandro O. Araujo1, William F. Falco2, Giovanna Machado3, Gleison A. Casagrande4, Ian Colbeck5, Tracy Lawson5, Samuel L. Oliveira1, Anderson R.L. Caires1,5
1Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
2Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
3Centro de Tecnologias Estratégicas do Nordeste − CETENE, Recife, PE, Brazil
4Instituto de Química, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
5School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK

Tài liệu tham khảo

Adhikari, 2020, Assessment of ZnO-NPs toxicity in maize: an integrative microRNAomic approach, Chemosphere, 249, 10.1016/j.chemosphere.2020.126197 Asada, 2006, Radical production and scavenging in the chloroplasts, 123 Baker, 2004, Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, J. Exp. Bot., 55, 1607, 10.1093/jxb/erh196 Baker, 2008, Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol., 59, 89, 10.1146/annurev.arplant.59.032607.092759 Bala, 2019, Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice, J. Soil Sci. Plant Nutr., 19, 379, 10.1007/s42729-019-00040-z Belkhodja, 1994, Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.), Plant Physiol., 104, 667, 10.1104/pp.104.2.667 Bulcke, 2013, Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes, Nanotoxicology, 1, 10.3109/17435390.2013.829591 Capaldi Arruda, 2015, Nanoparticles applied to plant science: a review, Talanta, 131, 693, 10.1016/j.talanta.2014.08.050 Chaerle, 2000, Imaging techniques and the early detection of plant stress, Trends Plant Sci., 5, 495, 10.1016/S1360-1385(00)01781-7 Chen, 2018, Time matters: the toxicity of zinc oxide nanoparticles to Lemna minor L. increases with exposure time, Water Air Soil Pollut., 229, 99, 10.1007/s11270-018-3759-4 De La Torre-Roche, 2013, Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean), Environ. Sci. Technol., 47, 718, 10.1021/es3041829 Edreva, 2005, Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach, Agric. Ecosyst. Environ., 106, 119, 10.1016/j.agee.2004.10.022 Ewais, 2017, Vegetative growth, photosynthetic pigments and yield of Phaseolus vulgaris (L.) plants in response to the application of biologically-synthesized zinc oxide nanoparticles and zinc sulfate, Al Azhar Bull. Sci., 9, 33 Falco, 2020, Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange, Sci. Total Environ., 701, 10.1016/j.scitotenv.2019.134816 Fiandra, 2020, Hazard assessment of polymer-capped CuO and ZnO nanocolloids: a contribution to the safe-by-design implementation of biocidal agents, NanoImpact, 17, 10.1016/j.impact.2019.100195 Girotto, 2013, Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry, Ecotoxicol. Environ. Saf., 93, 145, 10.1016/j.ecoenv.2013.03.021 Gottschalk, 2009, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol., 43, 9216, 10.1021/es9015553 Gowayed, 2015, Influence of zinc oxide nanoparticles on cadmium toxicity on germination of faba bean (Vicia faba L.), J. Plant Prod. Sci., 4, 21 Gowayed, 2016, Effect of zinc oxide nanoparticles on antioxidative system of Faba bean (Vicia faba L) seedling exposed to cadmium, Life Sci. J., 13, 18 Hacker, 2007, Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA), Tree Physiol., 27, 1661, 10.1093/treephys/27.12.1661 Iftikhar, 2019, Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress, Environ. Pollut., 254, 10.1016/j.envpol.2019.113109 Jiang, 2009, Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut., 157, 1619, 10.1016/j.envpol.2008.12.025 Klaine, 2008, Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1 Krause, 1991, Chlorophyll fluorescence and photosynthesis: the basics, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313, 10.1146/annurev.pp.42.060191.001525 Krumova, 2016, Chapter 1. Overview of reactive oxygen species, 1 Lawson, 2008, Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2, J. Exp. Bot., 59, 3609, 10.1093/jxb/ern211 Leme, 2009, Allium cepa test in environmental monitoring: a review on its application, Mutat. Res. - Rev. Mutat. Res., 682, 71, 10.1016/j.mrrev.2009.06.002 Lichtenthaler, 1997, Fluorescence imaging as a diagnostic tool for plant stress, Trends Plant Sci., 2, 316, 10.1016/S1360-1385(97)89954-2 Lovern, 2007, Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, Nano-C 60, and C 60 HxC 70 Hx), Environ. Sci. Technol., 41, 4465, 10.1021/es062146p Lowry, 2008, Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation, J. Coatings Technol. Res., 5, 233, 10.1007/s11998-007-9064-6 Luo, 2014, Reducing ZnO nanoparticle cytotoxicity by surface modification, Nanoscale, 6, 5791, 10.1039/C4NR00458B Ma, 2013, Ecotoxicity of manufactured ZnO nanoparticles – a review, Environ. Pollut., 172, 76, 10.1016/j.envpol.2012.08.011 Mahmoud, 2019, Molecular and cytogenetic assessment of zinc nanoparticles on Vicia faba plant cells, Egypt. J. Exp. Biol., 15 Malea, 2019, Zinc uptake, photosynthetic efficiency and oxidative stress in the seagrass Cymodocea nodosa exposed to ZnO nanoparticles, Materials (Basel), 12, 2101, 10.3390/ma12132101 McAusland, 2013, A novel system for spatial and temporal imaging of intrinsic plant water use efficiency, J. Exp. Bot., 64, 4993, 10.1093/jxb/ert288 Mueller, 2008, Exposure modeling of engineered nanoparticles in the environment, Environ. Sci. Technol., 42, 4447, 10.1021/es7029637 Murchie, 2013, Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications, 64, 3983 Nadi, 2013, Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba bean (Vicia faba L.), Int. J. Biosci., 3, 267, 10.12692/ijb/3.9.267-272 Pandey, 2018, Nanopesticides: opportunities in crop protection and associated environmental risks, Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 88, 1287, 10.1007/s40011-016-0791-2 Prakash, 2016, Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings, Acta Biol. Hung., 67, 286, 10.1556/018.67.2016.3.6 Quina, 2004, Nanotecnologia e o meio ambiente: perspectivas e riscos, Quim Nova, 27, 1028, 10.1590/S0100-40422004000600031 Rastogi, 2017, Impact of metal and metal oxide nanoparticles on plant: a critical review, Front. Chem., 5, 10.3389/fchem.2017.00078 Rastogi, 2019, Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast, Photosynthetica, 57, 209, 10.32615/ps.2019.019 Reed, 2012, Solubility of nano-zinc oxide in environmentally and biologically important matrices, Environ. Toxicol. Chem., 31, 93, 10.1002/etc.708 Rossi, 2019, Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants, Plant Physiol. Biochem., 135, 160, 10.1016/j.plaphy.2018.12.005 Sadauskas, 2007, Kupffer cells are central in the removal of nanoparticles from the organism, Part. Fibre Toxicol., 4, 10, 10.1186/1743-8977-4-10 Scherer, 2019, Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence, Sci. Total Environ., 660, 459, 10.1016/j.scitotenv.2018.12.444 Servin, 2016, Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk, NanoImpact, 1, 9, 10.1016/j.impact.2015.12.002 Singh, 2018, Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings, Environ. Nanotechnology, Monit. Manag., 9, 42, 10.1016/j.enmm.2017.11.006 Singh, 2018, Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants, J. Mater. Sci., 53, 185, 10.1007/s10853-017-1544-1 Sirelkhatim, 2015, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Lett, 7, 219, 10.1007/s40820-015-0040-x Stoimenov, 2002, Metal oxide nanoparticles as bactericidal agents, Langmuir, 18, 6679, 10.1021/la0202374 Sugantharaj David, 2017, Toxicity, uptake, and accumulation of nano and bulk cerium oxide particles in Artemia salina, Environ. Sci. Pollut. Res., 24, 24187, 10.1007/s11356-017-9975-4 Tripathi, 2017, Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle, Front. Plant Sci., 8, 10.3389/fpls.2017.00001 Velicogna, 2020, Phytotoxicity of copper oxide nanoparticles in soil with and without biosolid amendment, NanoImpact, 17, 10.1016/j.impact.2019.100196 Wang, 2006, Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice, Toxicol. Lett., 161, 115, 10.1016/j.toxlet.2005.08.007 Wang, 2018, Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants, Biol. Plant., 62, 801, 10.1007/s10535-018-0813-4 Youssef, 2020, Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba, Environ. Sci. Pollut. Res., 27, 18972, 10.1007/s11356-018-3250-1