ZnFe2O4/TiO2 composites with type-I heterojunction for photocatalytic reduction of CO2

Journal of CO2 Utilization - Tập 75 - Trang 102574 - 2023
Kaja Spilarewicz1, Kamil Urbanek2,3, Anna Jakimińska1,3, Wojciech Macyk2
1Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30–387 Kraków, Poland
2Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387, Kraków, Poland
3Doctoral School of Exact and Natural Sciences, Jagiellonian University, ul. S. Łojasiewicza 11, 30–348 Kraków, Poland

Tài liệu tham khảo

Casbeer, 2012, Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 87, 1, 10.1016/j.seppur.2011.11.034 Chandrasekaran, 2018, Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting, J. Mater. Chem. A., 6, 11078, 10.1039/C8TA03669A Sonia, 2023, Spinel ferrites/metal oxide nanocomposites for waste water treatment, Appl. Phys. A., 129, 10.1007/s00339-022-06288-0 Jacinto, 2020, Magnetic materials for photocatalytic applications—a review, J. Sol. -Gel Sci. Technol., 96, 1, 10.1007/s10971-020-05333-9 Zhong, 2010, Nearly monodisperse hollow Fe2O3 nanoovals: synthesis, magnetic property and applications in photocatalysis and gas sensors, Sens. Actuators B Chem., 145, 651, 10.1016/j.snb.2010.01.016 Taffa, 2016, Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3− xO4) for water splitting: a mini-review, J. Photonics Energy, 7, 10.1117/1.JPE.7.012009 Chandrika, 2019, Studies on structural and optical properties of nano ZnFe2O4 and ZnFe2O4-TiO2 composite synthesized by co-precipitation route, Mater. Chem. Phys., 230, 107, 10.1016/j.matchemphys.2019.03.059 Zhu, 2022, Progress in the preparation and modification of zinc ferrites used for the photocatalytic degradation of organic pollutants, Int. J. Environ. Res. Public. Health, 19, 10710, 10.3390/ijerph191710710 Sonu, 2021, An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2021.105812 Yengantiwar, 2022, ZnFe2O4/ ZnO 0D–1D heterojunction for efficient photoelectrochemical water splitting, Mater. Sci. Eng. B., 284, 10.1016/j.mseb.2022.115854 Rong, 2019, An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement, Chem. Eng. J., 371, 286, 10.1016/j.cej.2019.04.052 Tang, 2022, A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant, J. Environ. Chem. Eng., 10, 10.1016/j.jece.2022.107797 Shi, 2022, Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation, Mater. Res. Bull., 150, 10.1016/j.materresbull.2022.111789 Veldurthi, 2018, Heterojunction ZnWO4/ZnFe2O4 composites with concerted effects and integrated properties for enhanced photocatalytic hydrogen evolution, Catal. Sci. Technol., 8, 1083, 10.1039/C7CY02281F Zhou, 2022, Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst, J. Colloid Interface Sci., 608, 2213, 10.1016/j.jcis.2021.10.053 Song, 2015, Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol, J. Colloid Interface Sci., 442, 60, 10.1016/j.jcis.2014.11.039 Iqbal, 2020, Photocatalytic reduction of CO2 to methanol over ZnFe2O4/TiO2 (p–n) heterojunctions under visible light irradiation, J. Chem. Technol. Biotechnol., 95, 2208, 10.1002/jctb.6408 Liu, 2021, Improved charge separation and carbon dioxide photoreduction performance of surface oxygen vacancy-enriched zinc ferrite@titanium dioxide hollow nanospheres with spatially separated cocatalysts, J. Colloid Interface Sci., 599, 1, 10.1016/j.jcis.2021.04.104 Ciocarlan, 2020, Ferrite@TiO2-nanocomposites as Z-scheme photocatalysts for CO2 conversion: insight into the correlation of the Co-Zn metal composition and the catalytic activity, J. CO2 Util., 36, 177, 10.1016/j.jcou.2019.11.012 Tahir, 2020, Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light, J. CO2 Util., 37, 134, 10.1016/j.jcou.2019.12.004 Altomare, 2015, QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD, J. Appl. Crystallogr., 48, 598, 10.1107/S1600576715002319 Gražulis, 2009, Crystallography open database – an open-access collection of crystal structures, J. Appl. Crystallogr., 42, 726, 10.1107/S0021889809016690 Gražulis, 2012, Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Res, 40, D420, 10.1093/nar/gkr900 Quirós, 2018, Using SMILES strings for the description of chemical connectivity in the crystallography open database, J. Chemin.-., 10, 10.1186/s13321-018-0279-6 Vaitkus, 2021, Validation of the crystallography open database using the crystallographic information framework, J. Appl. Crystallogr., 54, 661, 10.1107/S1600576720016532 Makuła, 2018, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra, J. Phys. Chem. Lett., 9, 6814, 10.1021/acs.jpclett.8b02892 Gillot, 1981, A study of infrared absorption in the oxidation of zinc-substituted magnetites to defect phase γ and hematite, J. Solid State Chem., 39, 329, 10.1016/0022-4596(81)90267-X Kotsikau, 2018, Structural, magnetic and hyperfine characterization of ZnxFe3–xO4 nanoparticles prepared by sol-gel approach via inorganic precursors, J. Phys. Chem. Solids, 114, 64, 10.1016/j.jpcs.2017.11.004 da Silva-Neto, 2019, UV random laser emission from flexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix, Sci. Rep., 9, 10.1038/s41598-019-48056-w Makovec, 2008, Non-stoichiometric zinc-ferrite spinel nanoparticles, J. Nanopart. Res., 10, 131, 10.1007/s11051-008-9400-5 Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A., 32, 751, 10.1107/S0567739476001551 Liu, 2016, Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green, Sci. Rep., 6 Zhang, 2015, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone, Sens. Actuators B Chem., 221, 55, 10.1016/j.snb.2015.06.040 Aguilar, 2013, Chapter 2 - Types of Nanomaterials and Corresponding Methods of Synthesis, 33 Shaterian, 2020, Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method, Mater. Res. Express, 6, 1250e5, 10.1088/2053-1591/ab65e0 Jakimińska, 2023, Phototransformations of TiO2/Ag2O composites and their influence on photocatalytic water splitting accompanied by methanol photoreforming, Nanoscale Adv., 5, 1926, 10.1039/D2NA00910B Urbanek, 2023, Photocatalytic reduction of CO2 at (SnO2, Fe3O4)/TiO2 composite, Mater. Today Sustain., 22 Luttrell, 2014, Why is anatase a better photocatalyst than rutile? - model studies on epitaxial TiO2 films, Sci. Rep., 4, 10.1038/srep04043 Yamada, 2012, Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals, Appl. Phys. Lett., 101, 10.1063/1.4754831 Kobielusz, 2018, Spectroelectrochemical analysis of TiO2 electronic states – implications for the photocatalytic activity of anatase and rutile, Catal. Today, 309, 35, 10.1016/j.cattod.2017.11.013 Scanlon, 2013, Band alignment of rutile and anatase TiO2, Nat. Mater., 12, 798, 10.1038/nmat3697 Buchalska, 2015, On oxygen activation at rutile- and anatase-TiO2, ACS Catal., 5, 7424, 10.1021/acscatal.5b01562