ZnFe2O4/TiO2 composites with type-I heterojunction for photocatalytic reduction of CO2
Tài liệu tham khảo
Casbeer, 2012, Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 87, 1, 10.1016/j.seppur.2011.11.034
Chandrasekaran, 2018, Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting, J. Mater. Chem. A., 6, 11078, 10.1039/C8TA03669A
Sonia, 2023, Spinel ferrites/metal oxide nanocomposites for waste water treatment, Appl. Phys. A., 129, 10.1007/s00339-022-06288-0
Jacinto, 2020, Magnetic materials for photocatalytic applications—a review, J. Sol. -Gel Sci. Technol., 96, 1, 10.1007/s10971-020-05333-9
Zhong, 2010, Nearly monodisperse hollow Fe2O3 nanoovals: synthesis, magnetic property and applications in photocatalysis and gas sensors, Sens. Actuators B Chem., 145, 651, 10.1016/j.snb.2010.01.016
Taffa, 2016, Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3− xO4) for water splitting: a mini-review, J. Photonics Energy, 7, 10.1117/1.JPE.7.012009
Chandrika, 2019, Studies on structural and optical properties of nano ZnFe2O4 and ZnFe2O4-TiO2 composite synthesized by co-precipitation route, Mater. Chem. Phys., 230, 107, 10.1016/j.matchemphys.2019.03.059
Zhu, 2022, Progress in the preparation and modification of zinc ferrites used for the photocatalytic degradation of organic pollutants, Int. J. Environ. Res. Public. Health, 19, 10710, 10.3390/ijerph191710710
Sonu, 2021, An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2021.105812
Yengantiwar, 2022, ZnFe2O4/ ZnO 0D–1D heterojunction for efficient photoelectrochemical water splitting, Mater. Sci. Eng. B., 284, 10.1016/j.mseb.2022.115854
Rong, 2019, An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement, Chem. Eng. J., 371, 286, 10.1016/j.cej.2019.04.052
Tang, 2022, A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant, J. Environ. Chem. Eng., 10, 10.1016/j.jece.2022.107797
Shi, 2022, Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation, Mater. Res. Bull., 150, 10.1016/j.materresbull.2022.111789
Veldurthi, 2018, Heterojunction ZnWO4/ZnFe2O4 composites with concerted effects and integrated properties for enhanced photocatalytic hydrogen evolution, Catal. Sci. Technol., 8, 1083, 10.1039/C7CY02281F
Zhou, 2022, Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst, J. Colloid Interface Sci., 608, 2213, 10.1016/j.jcis.2021.10.053
Song, 2015, Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol, J. Colloid Interface Sci., 442, 60, 10.1016/j.jcis.2014.11.039
Iqbal, 2020, Photocatalytic reduction of CO2 to methanol over ZnFe2O4/TiO2 (p–n) heterojunctions under visible light irradiation, J. Chem. Technol. Biotechnol., 95, 2208, 10.1002/jctb.6408
Liu, 2021, Improved charge separation and carbon dioxide photoreduction performance of surface oxygen vacancy-enriched zinc ferrite@titanium dioxide hollow nanospheres with spatially separated cocatalysts, J. Colloid Interface Sci., 599, 1, 10.1016/j.jcis.2021.04.104
Ciocarlan, 2020, Ferrite@TiO2-nanocomposites as Z-scheme photocatalysts for CO2 conversion: insight into the correlation of the Co-Zn metal composition and the catalytic activity, J. CO2 Util., 36, 177, 10.1016/j.jcou.2019.11.012
Tahir, 2020, Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light, J. CO2 Util., 37, 134, 10.1016/j.jcou.2019.12.004
Altomare, 2015, QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD, J. Appl. Crystallogr., 48, 598, 10.1107/S1600576715002319
Gražulis, 2009, Crystallography open database – an open-access collection of crystal structures, J. Appl. Crystallogr., 42, 726, 10.1107/S0021889809016690
Gražulis, 2012, Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Res, 40, D420, 10.1093/nar/gkr900
Quirós, 2018, Using SMILES strings for the description of chemical connectivity in the crystallography open database, J. Chemin.-., 10, 10.1186/s13321-018-0279-6
Vaitkus, 2021, Validation of the crystallography open database using the crystallographic information framework, J. Appl. Crystallogr., 54, 661, 10.1107/S1600576720016532
Makuła, 2018, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra, J. Phys. Chem. Lett., 9, 6814, 10.1021/acs.jpclett.8b02892
Gillot, 1981, A study of infrared absorption in the oxidation of zinc-substituted magnetites to defect phase γ and hematite, J. Solid State Chem., 39, 329, 10.1016/0022-4596(81)90267-X
Kotsikau, 2018, Structural, magnetic and hyperfine characterization of ZnxFe3–xO4 nanoparticles prepared by sol-gel approach via inorganic precursors, J. Phys. Chem. Solids, 114, 64, 10.1016/j.jpcs.2017.11.004
da Silva-Neto, 2019, UV random laser emission from flexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix, Sci. Rep., 9, 10.1038/s41598-019-48056-w
Makovec, 2008, Non-stoichiometric zinc-ferrite spinel nanoparticles, J. Nanopart. Res., 10, 131, 10.1007/s11051-008-9400-5
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A., 32, 751, 10.1107/S0567739476001551
Liu, 2016, Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green, Sci. Rep., 6
Zhang, 2015, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone, Sens. Actuators B Chem., 221, 55, 10.1016/j.snb.2015.06.040
Aguilar, 2013, Chapter 2 - Types of Nanomaterials and Corresponding Methods of Synthesis, 33
Shaterian, 2020, Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method, Mater. Res. Express, 6, 1250e5, 10.1088/2053-1591/ab65e0
Jakimińska, 2023, Phototransformations of TiO2/Ag2O composites and their influence on photocatalytic water splitting accompanied by methanol photoreforming, Nanoscale Adv., 5, 1926, 10.1039/D2NA00910B
Urbanek, 2023, Photocatalytic reduction of CO2 at (SnO2, Fe3O4)/TiO2 composite, Mater. Today Sustain., 22
Luttrell, 2014, Why is anatase a better photocatalyst than rutile? - model studies on epitaxial TiO2 films, Sci. Rep., 4, 10.1038/srep04043
Yamada, 2012, Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals, Appl. Phys. Lett., 101, 10.1063/1.4754831
Kobielusz, 2018, Spectroelectrochemical analysis of TiO2 electronic states – implications for the photocatalytic activity of anatase and rutile, Catal. Today, 309, 35, 10.1016/j.cattod.2017.11.013
Scanlon, 2013, Band alignment of rutile and anatase TiO2, Nat. Mater., 12, 798, 10.1038/nmat3697
Buchalska, 2015, On oxygen activation at rutile- and anatase-TiO2, ACS Catal., 5, 7424, 10.1021/acscatal.5b01562