Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors

DISCOVER NANO - Tập 18 - Trang 1-16 - 2023
Geyse A. C. Ribeiro1, Scarllett L. S. de Lima2, Karolinne E. R. Santos1, Jhonatam P. Mendonça1, Pedro Macena2, Emanuel C. Pessanha2, Thallis C. Cordeiro3, Jules Gardener4, Guilhermo Solórzano2, Jéssica E. S. Fonsaca5, Sergio H. Domingues5, Clenilton C. dos Santos6, André H. B. Dourado7, Auro A. Tanaka1, Anderson G. M. da Silva2, Marco A. S. Garcia1
1Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, Brazil
2Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
3Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
4Center for Nanoscale Systems, School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
5Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian University, São Paulo, Brazil
6Departament of Physics, Universidade Federal Do Maranhão (UFMA), São Luís, Brazil
7São Carlos Institute of Chemistry, Universidade de São Paulo (USP), São Carlos, Brazil

Tóm tắt

MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g−1 at a charge/discharge current density of 1.0 A g−1 in a 2.0 mol L−1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.

Tài liệu tham khảo

Cronin J, Anandarajah G, Dessens O. Climate change impacts on the energy system: a review of trends and gaps. Clim Change. 2018;151:79–93. https://doi.org/10.1007/s10584-018-2265-4. Worku MY. Recent advances in energy storage systems for renewable source grid integration: a comprehensive review. Sustainability. 2022;14:5985. https://doi.org/10.3390/su14105985. Castro-Gutiérrez J, Celzard A, Fierro V. Energy storage in supercapacitors: focus on tannin-derived carbon electrodes. Front Mater. 2020. https://doi.org/10.3389/fmats.2020.00217. Dhandapani E, Thangarasu S, Ramesh S, Ramesh K, Vasudevan R, Duraisamy N. Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor — a review. J Energy Storage. 2022;52: 104937. https://doi.org/10.1016/j.est.2022.104937. Rehman ZU, Bilal M, Hou J, Ahmad J, Ullah S, Wang X, Hussain A, Metal oxide–carbon composites for supercapacitor applications, in: Metal Oxide-Carbon Hybrid Materials, Elsevier, 2022: pp. 133–177. https://doi.org/10.1016/B978-0-12-822694-0.00003-X Dubal DP, Chodankar NR, Gomez-Romero P, Kim D-H Fundamentals of Binary Metal Oxide–Based Supercapacitors, in: Metal Oxides in Supercapacitors, Elsevier, 2017: pp 79–98. https://doi.org/10.1016/B978-0-12-810464-4.00004-8. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845–54. https://doi.org/10.1038/nmat2297. Fleischmann S, Mitchell JB, Wang R, Zhan C, Jiang D, Presser V, Augustyn V. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem Rev. 2020;120:6738–82. https://doi.org/10.1021/acs.chemrev.0c00170. Park HW, Roh KC. Recent advances in and perspectives on pseudocapacitive materials for supercapacitors–a review. J Power Sources. 2023;557: 232558. https://doi.org/10.1016/j.jpowsour.2022.232558. Liu J, Bao J, Zhang X, Gao Y, Zhang Y, Liu L, Cao Z. MnO 2 -based materials for supercapacitor electrodes: challenges, strategies and prospects. RSC Adv. 2022;12:35556–78. https://doi.org/10.1039/D2RA06664E. Kumar N, Guru Prasad K, Sen A, Maiyalagan T. Enhanced pseudocapacitance from finely ordered pristine α-MnO2 nanorods at favourably high current density using redox additive. Appl Surf Sci. 2018;449:492–9. https://doi.org/10.1016/j.apsusc.2018.01.025. Shen L, Peng L, Fu R, Liu Z, Jiang X, Wang D, Kamali AR, Shi Z. Synthesis of flower-like MnO2 nanostructure with freshly prepared Cu particles and electrochemical performance in supercapacitors. PLoS ONE. 2022;17: e0269086. https://doi.org/10.1371/journal.pone.0269086. Liang R, Fu J, Deng Y-P, Pei Y, Zhang M, Yu A, Chen Z. Parasitic electrodeposition in Zn-MnO2 batteries and its suppression for prolonged cyclability. Energy Storage Mater. 2021;36:478–84. https://doi.org/10.1016/j.ensm.2020.12.015. Geonmonond RS, Da Silva AGM, Camargo PHC. Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. An Acad Bras Cienc. 2018;90:719–44. https://doi.org/10.1590/0001-3765201820170561. Mai L, Tian X, Xu X, Chang L, Xu L. Nanowire electrodes for electrochemical energy storage devices. Chem Rev. 2014;114:11828–62. https://doi.org/10.1021/cr500177a. Dharanya C, Dharmalingam G. Oxygen vacancies in nanostructured hetero-interfacial oxides: a review. J Nanopart Res. 2022;24:60. https://doi.org/10.1007/s11051-022-05440-4. Liu S, Kang L, Jun SC. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv Mat. 2021. https://doi.org/10.1002/adma.202004689. Liu S, Ni D, Li H-F, Hui KN, Ouyang C-Y, Jun SC. Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2 O4 (M = Mn, Ni, Cu, and Co). J Mater Chem A Mater. 2018;6:10674–85. https://doi.org/10.1039/C8TA00540K. Liu S, Kang L, Zhang J, Jun SC, Yamauchi Y. Sodium preintercalation-induced oxygen-deficient hydrated potassium manganese oxide for high-energy flexible Mg-ion supercapacitors. NPG Asia Mater. 2023;15:9. https://doi.org/10.1038/s41427-022-00450-z. Wang Y, Xiao X, Xue H, Pang H. Zinc oxide based composite materials for advanced supercapacitors. ChemistrySelect. 2018;3:550–65. https://doi.org/10.1002/slct.201702780. Yuan S, Zhang Q. Application of one-dimensional nanomaterials in catalysis at the single-molecule and single-particle scale. Front Chem. 2021. https://doi.org/10.3389/fchem.2021.812287. de Lima SLS, Pereira FS, de Lima RB, de Freitas IC, Spadotto J, Connolly BJ, Barreto J, Stavale F, Vitorino HA, Fajardo HV, Tanaka AA, Garcia MAS, da Silva AGM. MnO2-Ir nanowires: combining ultrasmall nanoparticle sizes O-vacancies, and low noble-metal loading with improved activities towards the oxygen reduction reaction. Nanomaterials. 2022;12:3039. https://doi.org/10.3390/nano12173039. Dong Y, Wang Y, Xu Y, Chen C, Wang Y, Jiao L, Yuan H. Facile synthesis of hierarchical nanocage MnCo 2 O 4 for high performance supercapacitor. Electrochim Acta. 2017;225:39–46. https://doi.org/10.1016/j.electacta.2016.12.109. Ghaly HA, El-Deen AG, Souaya ER, Allam NK. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim Acta. 2019;310:58–69. https://doi.org/10.1016/j.electacta.2019.04.071. Guo C, Zhang Y, Yin M, Shi J, Zhang W, Wang X, Wu Y, Ma J, Yuan D, Jia C. Co3O4@Co3S4 core-shell neuroid network for high cycle-stability hybrid-supercapacitors. J Power Sources. 2021;485: 229315. https://doi.org/10.1016/j.jpowsour.2020.229315. Li J, Xiong D, Wang L, Hirbod MKS, Li X. High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors. J Energy Chem. 2019;37:66–72. https://doi.org/10.1016/j.jechem.2018.11.015. He Q, Liu J, Liu X, Li G, Chen D, Deng P, Liang J. A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites. Electrochim Acta. 2019;296:683–92. https://doi.org/10.1016/j.electacta.2018.11.096. Kakazey M, Ivanova N, Boldurev Y, Ivanov S, Sokolsky G, Gonzalez-Rodriguez JG, Vlasova M Electron paramagnetic resonance in MnO2 powders and comparative estimation of electric characteristics of power sources based on them in the MnO 2 ±Zn system, n.d. Dang S, Wen Y, Qin T, Hao J, Li H, Huang J, Yan D, Cao G, Peng S. Nanostructured manganese dioxide with adjustable Mn3+/Mn4+ ratio for flexible high-energy quasi-solid supercapacitors. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2020.125342. Peng W, Li L, Yu S, Yang P, Xu K. Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere. Ceram Int. 2021;47:29191–6. https://doi.org/10.1016/j.ceramint.2021.07.083. Romeiro FC, Marinho JZ, Silva ACA, Cano NF, Dantas NO, Lima RC. Photoluminescence and Magnetism in Mn 2+ -doped ZnO nanostructures grown rapidly by the microwave hydrothermal method. J Phys Chem C. 2013;117:26222–7. https://doi.org/10.1021/jp408993y. Archer PI, Santangelo SA, Gamelin DR. Direct observation of sp−d exchange interactions in colloidal Mn2+ - and Co2+ -doped CdSe quantum dots. Nano Lett. 2007;7:1037–43. https://doi.org/10.1021/nl0702362. Mahmood M, Rasheed A, Ayman I, Rasheed T, Munir S, Ajmal S, Agboola PO, Warsi MF, Shahid M. Synthesis of ultrathin MnO2 nanowire-intercalated 2D-MXenes for High-performance hybrid supercapacitors. Energy Fuels. 2021;35:3469–78. https://doi.org/10.1021/acs.energyfuels.0c03939. Yin B, Zhang S, Jiao Y, Liu Y, Qu F, Wu X. Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. CrystEngComm. 2014;16:9999–10005. https://doi.org/10.1039/C4CE01302F. Schiavi PG, Altimari P, Marzolo F, Rubino A, Zanoni R, Pagnanelli F. Optimizing the structure of Ni–Ni(OH)2/NiO core-shell nanowire electrodes for application in pseudocapacitors: the influence of metallic core, Ni(OH)2/NiO ratio and nanowire length. J Alloys Compd. 2021;856: 157718. https://doi.org/10.1016/j.jallcom.2020.157718. Du X, Sun J, Wu R, Bao E, Xu C, Chen H. Uniform MnCo2 O4.5 porous nanowires and quasi-cubes for hybrid supercapacitors with excellent electrochemical performances. Nanoscale Adv. 2021;3:4447–58. https://doi.org/10.1039/D1NA00271F. Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H. Facile synthesis route of porous MnCo2 O4 and CoMn2 O4 nanowires and their excellent electrochemical properties in supercapacitors. J Mater Chem A. 2014;2:16480–8. https://doi.org/10.1039/C4TA03123G. Naveen AN, Selladurai S. Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications. Electrochim Acta. 2014;125:404–14. https://doi.org/10.1016/j.electacta.2014.01.161. Dall’Oglio D, Garcia M, Fiorio J, de Abreu W, Pereira L, Braga A, de Moura E, Guldhe A, Bux F, de Moura C. Reusable heterogeneous SnO2/ZnO catalyst for biodiesel production from acidified/acid oils. J Braz Chem Soc. 2021. https://doi.org/10.21577/0103-5053.20200167. Barzegar F, Bello A, Momodu D, Madito MJ, Dangbegnon J, Manyala N. Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. J Power Sources. 2016;309:245–53. https://doi.org/10.1016/j.jpowsour.2016.01.097. Qu L, Zhao Y, Khan AM, Han C, Hercule KM, Yan M, Liu X, Chen W, Wang D, Cai Z, Xu W, Zhao K, Zheng X, Mai L. Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@Ni x Co2 x (OH) 6 x for high-performance supercapacitors. Nano Lett. 2015;15:2037–44. https://doi.org/10.1021/nl504901p. Li S, Wen J, Mo X, Long H, Wang H, Wang J, Fang G. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J Power Sources. 2014;256:206–11. https://doi.org/10.1016/j.jpowsour.2014.01.066. Rani N, Saini M, Yadav S, Gupta K, Saini K, Khanuja M, High performance super-capacitor based on rod shaped ZnO nanostructure electrode, In: AIP Conference Proceedings 2020: p 020042. https://doi.org/10.1063/5.0026084. Khan K, Ullah Shah MZ, Aziz U, Hayat K, Sajjad M, Ahmad I, Awais Ahmad S, Karim Shah S, Shah A. Development of 1.6 V hybrid supercapacitor based on ZnO nanorods/MnO2 nanowires for next-generation electrochemical energy storage. J Electroanal Chem. 2022;922:116753. https://doi.org/10.1016/j.jelechem.2022.116753. Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D. Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces. 2016;8:9050–8. https://doi.org/10.1021/acsami.5b11300. Wang X, Yang Y, He P, Zhang F, Tang J, Guo Z, Que R. Facile synthesis of MnO2@NiCo2O4 core–shell nanowires as good performance asymmetric supercapacitor. J Mater Sci Mater Electron. 2020;31:1355–66. https://doi.org/10.1007/s10854-019-02649-3. Sui Z, Chang Z, Xu X, Li Y, Zhu X, Zhao C, Chen Q. Direct growth of MnO2 on highly porous nitrogen-doped carbon nanowires for asymmetric supercapacitors. Diam Relat Mater. 2020;108: 107988. https://doi.org/10.1016/j.diamond.2020.107988. Ahmad R, Sohail A, Yousuf M, Majeed A, Mir A, Aalim M, Shah MA. P- N heterojunction NiO/ZnO nanowire based electrode for Asymmetric Supercapacitor Applications. Nanotechnology. 2023. https://doi.org/10.1088/1361-6528/ad06d3.