Zn, Cu and Co in cyanobacteria: selective control of metal availability

Oxford University Press (OUP) - Tập 27 Số 2-3 - Trang 165-181 - 2003
Jim Cavet1, Gilles P.M. Borrelly1, Nigel J. Robinson1
1Biosciences, Medical School, University of Newcastle, Newcastle NE2 4HH, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fraústo da Silva, J.J.R. and Williams, R.J.P. (2001) The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd edn. Clarendon Press, Oxford.

10.1046/j.1365-2958.1997.3391695.x

Giovannoni S.J. Turner S. Olsen G.J. Barns S. Lane D.J. Pace N.R. (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170, 3584–3592.

10.1016/S0168-6445(03)00055-X

10.1016/S0168-6445(03)00043-3

10.1126/science.1065349

Whitton, B.A. (1980) Zinc and plants in rivers and streams. In: Algae as Ecological Indicators (Shubert L.E., Ed.), pp. 257–280. Academic Press, London.

Clark, R.B. (1992) Marine Pollution. Oxford University Press, Oxford.

Say P.J. Whitton B.A. (1977) Influence of zinc on lotic plants. II. Environmental effects on toxicity of zinc to Hormidium rivulare . Freshwater Biol. 7, 377–384.

10.1080/00071618200650021

Jensen T.E. Baxter M. Rachlin J.W. Jani V. (1982) Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) into cellular compartments, especially polyphosphate bodies: An X-ray energy dispersive study. Environ. Pollut. (Ser. A) 27, 119–127.

10.1073/pnas.241503898

Bartsevich V.V. Pakrasi H.B. (1995) Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO J. 14, 1845–1853.

10.1074/jbc.271.42.26057

Ogawa T. Bao D.H. Katoh H. Shibata M. Pakrasi H.B. Bhattacharyya-Pakrasi M. (2002) A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J. Biol. Chem. 277, 28981–28986.

10.1146/annurev.arplant.49.1.397

10.1093/emboj/19.10.2139

Zhang L. McSpadden B. Pakrasi H.B. Whitmarsh J. (1992) Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. J. Biol. Chem. 267, 19054–19059.

10.1016/S0005-2728(05)80252-X

Rich P.R. Heathcote P. Moss D.A. (1987) Kinetic-studies of electron-transfer in a hybrid system constructed from the cytochrome bf complex and photosystem-I. Biochim. Biophys. Acta 892, 138–151.

10.1093/emboj/16.13.3851

10.1016/0302-4598(95)01787-F

10.1111/j.1365-2958.1994.tb00430.x

10.1073/pnas.91.20.9651

10.1074/jbc.M011243200

10.1073/pnas.97.2.652

Odermatt A. Suter H. Krapf R. Solioz M. (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae . J. Biol. Chem. 268, 12775–12779.

10.1074/jbc.272.41.25787

Petris M.J. Mercer J.F. Culvenor J.G. Lockhart P. Gleeson P.A. Camakaris J. (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095.

10.1074/jbc.272.34.21461

10.1074/jbc.M105857200

10.1046/j.1365-2958.2002.02983.x

10.1126/science.284.5415.805

10.1126/science.1060331

10.1021/ar000012p

10.1074/jbc.R000006200

10.1016/S0968-0004(99)01492-9

10.1007/s007750050133

Mulrooney S.B. Hausinger R.P. (2003) Nickel uptake and utilisation by microrganisms. FEMS Microbiol. Rev. 27, 000–000.

10.1074/jbc.272.38.23469

10.1007/s007750050279

10.1038/11489

10.1074/jbc.274.34.23719

10.1074/jbc.272.52.33191

10.1021/bi002315x

10.1074/jbc.272.14.9215

10.1126/science.278.5339.817

10.1006/bbrc.2001.5757

10.1016/S0014-5793(99)00091-5

10.1021/bi025515c

10.1074/jbc.270.9.4349

Lu Z.H. Solioz M. (2002) Bacterial copper transport. Adv. Protein Chem. 60, 93–121.

10.1074/jbc.M104790200

10.1038/nsb0901-751

10.1126/science.278.5339.853

10.1074/jbc.M104807200

10.1074/jbc.C000172200

10.1074/jbc.M003238200

10.1074/jbc.M001775200

Robinson, N.J., Rutherford, J.C., Pocock, M.R. and Cavet, J.S. (2000) Metal metabolism and toxicity: Repetitive DNA. In: The Ecology of Cyanobacteria (Whitton, B.A. and Potts, M., Eds.), pp. 443–463. Kluwer Academic, Dordrecht.

Blenkowe D.K. Morby A.P. (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol. Rev. 27, 219–311.

10.1111/j.1574-6976.2000.tb00546.x

10.1111/j.1365-2958.1993.tb01109.x

10.1016/S0168-6445(03)00054-8

10.1093/nar/21.4.921

10.1093/nar/24.19.3714

Turner J.S. Morby A.P. Whitton B.A. Gupta A. Robinson N.J. (1993) Construction and characterisation of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J. Biol. Chem. 268, 4494–4498.

10.1007/BF01569937

10.1074/jbc.273.33.21246

Robinson, N.J., Bird, A.J. and Turner, J.S. (1998) Metallothionein gene regulation in cyanobacteria. In: Metal Ions in Gene Regulation (Silver, S. and Walden, W., Eds.), pp. 372–397. Chapman and Hall, London.

10.1016/S0065-2911(01)44014-8

10.1007/BF01569893

10.1042/bj2510691

10.1016/0888-7543(90)90038-V

Quaife C.J. Findley S.D. Erickson J.C. Froelick G.J. Kelly E.J. Zambrowicz B.P. Palmiter R.D. (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 14, 7250–7259.

10.1016/0076-6879(91)05145-L

10.1073/pnas.95.15.8428

Lichtlen P. Schaffner W. (2001) The ‘metal transcription factor’ MTF-1: biological facts and medical implications. Swiss Med. Wkly. 131, 647–652.

Wüthrich K. (1991) Determination of the three-dimensional structure of metallothioneins by nuclear magnetic resonance spectroscopy in solution. Methods Enzymol. 205, 502–520.

10.1016/0076-6879(91)05134-H

10.1016/0022-2836(92)90930-I

10.1074/jbc.273.36.22957

10.1073/pnas.171120098

10.1046/j.1365-2958.2002.03109.x

10.1139/bcb-76-2-3-223

10.1016/S1367-5931(99)00070-8

Luisi B. (1992) DNA transcription. Zinc standard for economy. Nature 356, 378–380.

10.1093/nar/27.1.215

10.1016/S0966-842X(99)01679-0

10.1016/S0076-6879(99)01075-7

Kröncke K.-D. Carlberg C. (2000) Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J. 14, 166–173.

10.1016/S0014-5793(97)00150-6

10.1073/pnas.97.1.477

10.1042/bj3440253

10.1111/j.1574-6968.2002.tb11295.x

10.1098/rspb.1992.0072

10.1111/j.1365-2958.1993.tb01110.x

10.1098/rspb.1990.0130

10.1126/science.225.4666.1043

10.1007/BF00040616

Muñoz A. Petering D.H. Shaw C.F. (1999) Reactions of electrophilic reagents that target the thiolate groups of metallothionein clusters: Preferential reaction of the α-domain with 5,5′-dithio-bis (2-nitrobenzoate) (DTNB) and aurothiolmalate (AuSTm). Inorg. Chem. 38, 5655–5659.

10.1073/pnas.97.6.2503

10.1073/pnas.95.18.10728

10.1093/dnares/3.3.109

10.1074/jbc.274.36.25827

10.1128/JB.182.6.1507-1514.2000

10.1046/j.1365-2958.2002.03068.x

Fan, B. and Rosen, B.P. (2002) Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J. Biol. Chem. (in press).

10.1006/jmbi.1997.1443

10.1074/jbc.M207677200

10.1016/S0168-6445(03)00051-2

Thibaut D. Couder M. Famechon A. Debussche L. Cameron B. Crouzet J. Blanche F. (1992) The final step in the biosynthesis of hydrogenobyrinic acid is catalyzed by the cobH gene product with precorrin-8x as the substrate. J. Bacteriol. 174, 1043–1049.

10.1016/S1074-5521(02)00156-4

10.1042/bst0300595