Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon
Tóm tắt
We introduce and propose zircon M257 as a future reference material for the determination of zircon U‐Pb ages by means of secondary ion mass spectrometry. This light brownish, flawless, cut gemstone specimen from Sri Lanka weighed 5.14 g (25.7 carats). Zircon M257 has TIMS‐determined, mean isotopic ratios (2s uncertainties) of 0.09100 ± 0.00003 for 206pb/238U and 0.7392 ± 0.0003 for 207pb/235U. Its 206pb/238U age is 561.3 ± 0.3 Ma (unweighted mean, uncertainty quoted at the 95% confidence level); the U‐Pb system is concordant within uncertainty of decay constants. Zircon M257 contains ∼ 840 μg g−1 U (Th/U ∼ 0.27). The material exhibits remarkably low heterogeneity, with a virtual absence of any internal textures even in cathodoluminescence images. The uniform, moderate degree of radiation damage (estimated from the expansion of unit‐cell parameters, broadening of Raman spectral parameters and density) corresponds well, within the “Sri Lankan trends”, with actinide concentrations, U‐Pb age, and the calculated alpha fluence of 1.66 × 1018 g−1. This, and a (U+Th)/He age of 419 ± 9 Ma (2s), enables us to exclude any unusual thermal history or heat treatment, which could potentially have affected the retention of radiogenic Pb. The oxygen isotope ratio of this zircon is 13.9%o VSMOW suggesting a metamorphic genesis in a marble or calc‐silicate skarn.
Từ khóa
Tài liệu tham khảo
Armstrong J.T., 1995, CITZAF: A package of correction programs for the quantitative electron microbeam X‐ray analysis of thick polished materials, thin films, and particles, Microbeam Analysis, 4, 177
CavosieA.J. ValleyJ.W. KitaN.T.andWildeSA.(2008)Origin of Sri Lanka gem zircon C73 in high δ18O marble orskarn.Chemical Geology in review.
FreiD.andGerdesA.(2008)Precise and accuratein‐situU‐Pb dating of zircon with high sample throughput by automated LA‐SF‐ICP‐MS.Chemical Geology(in press).
Gaft M., 2000, Laser‐induced luminescence of rare‐earth elements in natural zircon, Journal of Alloys and Compounds, 300
GerstenbergerH.andHaaseG.(1997)A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations.Chemical Geology 136 309–312.
Götze J., 1998, Principle and advantages of cathodoluminescence microscopy, Microscopy and Analysis, 55, 21
Holland H.D., 1954, Nuclear geology, 175
Hurley P.M., 1954, Nuclear geology, 301
KennedyA.K.(2000)The search for new zircon standards for SIMS. In:WoodheadJ.D. HergtJ.M.andNobleW.P.(eds) Beyond 2000: New Frontiers in Isotope Geoscience Lome Abstracts and Proceedings 109–111.
Kennedy A.K., 1994, Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology, 166
Ludwig K.R., 2002, SQUID 1.02, a user's manual, Berkeley Geochronology Center Special Publication, 2, 22pp
Ludwig K.R., 2003, User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publication, 4, 71
Murakami T., 1991, Alpha‐decay event damage in zircon, American Mineralogist, 76, 1510
Pidgeon R.T., 1997, Zirkon in Edelsteinqualität: Seine Verwendung als Standardmaterial in der geologischen Zeitbestimmung mit lonensonden, Zeitschrift der Deutschen Gemmologischen Gesellschaft, 46, 21
PidgeonR.T. FurfaroD. KennedyA.K. NemchinAA.andVan BronswijkW.(1994)Calibration of zircon standards for the Curtin SHRIMP II. In: Eighth International Conference on Geochronology Cosmochronology and Isotope Geology Berkeley USA Abstracts Vol. U.S. Geological Survey Circular 1107 251.
Remond G., 1992, Cathodoluminescence applied to the microcharacterization of mineral materials: A present status in experimentation and interpretation, Scanning Microscopy International, 6, 23
Van Achterbergh E., 2001, Laser‐ablation‐ICP‐MS in the Earth sciences, principles and applications, 239
Williams I.S., 1998, Applications of microanalytical techniques to understanding mineralizing processes, 1