Zigzag Persistence

Springer Science and Business Media LLC - Tập 10 - Trang 367-405 - 2010
Gunnar Carlsson1, Vin de Silva2
1Department of Mathematics, Stanford University, Stanford, USA
2Department of Mathematics, Pomona College, Claremont, USA

Tóm tắt

We describe a new methodology for studying persistence of topological features across a family of spaces or point-cloud data sets, called zigzag persistence. Building on classical results about quiver representations, zigzag persistence generalises the highly successful theory of persistent homology and addresses several situations which are not covered by that theory. In this paper we develop theoretical and algorithmic foundations with a view towards applications in topological statistics.

Tài liệu tham khảo

M.F. Atiyah, On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84, 307–317 (1956). G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vis. 76(1), 1–12 (2008). G. Carlsson, V. de Silva, D. Morozov, Zigzag persistent homology and real-valued functions, in Proceedings 25th ACM Symposium on Computational Geometry (SoCG), 2009, pp. 247–256. F. Chazal, D. Cohen-Steiner, M. Glisse, L. Guibas, S. Oudot, Proximity of persistence modules and their diagrams, in Proceedings of the 25th Annual ACM Symposium on Computational Geometry (SoCG), 2009, pp. 237–246. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37(1), 103–120 (2007). D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009). V. de Silva, G. Carlsson, Topological estimation using witness complexes, in Eurographics Symposium on Point-Based Graphics, ed. by M. Alexa, S. Rusinkiewicz (ETH, Zürich, 2004), pp. 157–166. H. Derksen, J. Weyman, Quiver representations, Not. Am. Math. Soc. 52(2), 200–206 (2005). H. Edelsbrunner, E.P. Mücke, Three-dimensional alpha shapes, ACM Trans. Graph. 13(1), 43–72 (1994). H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28, 511–533 (2002). P. Gabriel, Unzerlegbare Darstellungen I, Manuscr. Math. 6, 71–103 (1972). V.G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56(1), 57–92 (1980). S. Lang, Algebra, 3rd edn. Graduate Texts in Mathematics (Springer, Berlin, 2005). A. Zomorodian, G. Carlsson, Computing persistent homology, Discrete Comput. Geom. 33(2), 249–274 (2005).