Zero loci of Bernstein–Sato ideals

Springer Science and Business Media LLC - Tập 225 - Trang 45-72 - 2021
Nero Budur1, Robin van der Veer1, Lei Wu2, Peng Zhou3
1KU Leuven, Leuven, Belgium
2Department of Mathematics, University of Utah, Salt Lake City, USA
3Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France

Tóm tắt

We prove a conjecture of the first author relating the Bernstein–Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the b-function of a multivariate polynomial with the monodromy eigenvalues on the Milnor fibers cohomology.

Tài liệu tham khảo

Bahloul, R., Oaku, T.: Local Bernstein-Sato ideals: algorithm and examples. J. Symbolic Comput. 45(1), 46–59 (2010) Bath, D.: Bernstein-Sato varieties and annihilation of powers. arXiv:1907.05301. To appear in Trans. Amer. Math. Soc Bath, D.: Combinatorially determined zeroes of Bernstein-Sato ideals for tame and free arrangements. J. Singul. 20, 165–204 (2020) Beilinson, A., Gaitsgory, D.: A corollary of the b-function lemma. Selecta Math. (N.S.) 18(2), 319–327 (2012) Bernstein, J.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl. 6, 273–285 (1972) Björk, J.-E.: Rings of differential operators. North-Holland Math. Libr. 21, xvii+374 (1979) Björk, J.-E.: Analytic \({{\mathscr {D}}}\)-Modules and Applications. Mathematics and its Applications, vol. 247, pp xiv+581. Kluwer academic publishers, New York (1993) Briançon, J., Maisonobe, P., Merle, M.: Constructibilité de l’idéal de Bernstein. In: Singularities-Sapporo 1998, pp 79–95, Adv. Stud. Pure Math., 29, Kinokuniya, Tokyo (2000) Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. pp xii+403, Cambridge University Press, Cambridge (1993) Budur, N.: Bernstein-Sato ideals and local systems. Ann. Inst. Fourier 65(2), 549–603 (2015) Budur, N., Liu, Y., Saumell, L., Wang, B.: Cohomology support loci of local systems. Michigan Math. J. 66(2), 295–307 (2017) Budur, N., Wang, B.: Local systems on analytic germ complements. Adv. Math. 306, 905–928 (2017) Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 265. xviii+249, Springer, Berlin (1984) Gyoja, A.: Bernstein-Sato’s polynomial for several analytic functions. J. Math. Kyoto Univ. 33, 399–411 (1993) Kaledin, D.: Normalization of a Poisson algebra is Poisson. Proc. Steklov Inst. Math. 264(1), 70–73 (2009) Kashiwara, M.: \(B\)-functions and holonomic systems. Rationality of roots of \(B\)-functions. Invent. Math. 38(1): 33–53 (1976/77) Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, pp. 134–142, Springer, Berlin (1983) Kashiwara, M., Kawai, T.: On holonomic systems for \(\prod _{l=1}^N(f_l+\sqrt{-1}O)^{\lambda _l}\). Publ. Res. Inst. Math. Sci. 15(2), 551–575 (1979) Loeser, F.: Fonctions zêta locales d’Igusa à plusieurs variables, intégration dans les fibres, et discriminants. Ann. Sci. École Norm. Sup. (4) 22(3), 435–471 (1989) Maisonobe, P.: Filtration Relative, l’Idéal de Bernstein et ses pentes. arXiv:1610.03354 Malgrange, B.: Polynômes de Bernstein-Sato et cohomologie évanescente. Astérisque 101, 243 (1983) Sabbah, C.: Proximité évanescente. I. Compositio Math. 62(3), 283–328 (1987) Sabbah, C.: Proximité évanescente. II. Compositio Math. 64(2), 213–241 (1987) Sabbah, C.: Modules d’Alexander et \({{\mathscr {D}}}\)-modules. Duke Math. J. 60(3), 729–814 (1990) Walther, U.: The Jacobian module, the Milnor fiber, and the \({{\mathscr {D}}}\)-module generated by \(f^s\). Invent. Math. 207(3), 1239–1287 (2017) Weibel, C.: An Introduction to Homological Algebra, p. xiv+450. Cambridge University Press, Cambridge (1994) Wu, L., Zhou, P.: Log \({{\mathscr {D}}}\)-modules and index theorem, arXiv:1904.09276v1