Zero loci of Bernstein–Sato ideals
Tóm tắt
We prove a conjecture of the first author relating the Bernstein–Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the b-function of a multivariate polynomial with the monodromy eigenvalues on the Milnor fibers cohomology.
Tài liệu tham khảo
Bahloul, R., Oaku, T.: Local Bernstein-Sato ideals: algorithm and examples. J. Symbolic Comput. 45(1), 46–59 (2010)
Bath, D.: Bernstein-Sato varieties and annihilation of powers. arXiv:1907.05301. To appear in Trans. Amer. Math. Soc
Bath, D.: Combinatorially determined zeroes of Bernstein-Sato ideals for tame and free arrangements. J. Singul. 20, 165–204 (2020)
Beilinson, A., Gaitsgory, D.: A corollary of the b-function lemma. Selecta Math. (N.S.) 18(2), 319–327 (2012)
Bernstein, J.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl. 6, 273–285 (1972)
Björk, J.-E.: Rings of differential operators. North-Holland Math. Libr. 21, xvii+374 (1979)
Björk, J.-E.: Analytic \({{\mathscr {D}}}\)-Modules and Applications. Mathematics and its Applications, vol. 247, pp xiv+581. Kluwer academic publishers, New York (1993)
Briançon, J., Maisonobe, P., Merle, M.: Constructibilité de l’idéal de Bernstein. In: Singularities-Sapporo 1998, pp 79–95, Adv. Stud. Pure Math., 29, Kinokuniya, Tokyo (2000)
Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. pp xii+403, Cambridge University Press, Cambridge (1993)
Budur, N.: Bernstein-Sato ideals and local systems. Ann. Inst. Fourier 65(2), 549–603 (2015)
Budur, N., Liu, Y., Saumell, L., Wang, B.: Cohomology support loci of local systems. Michigan Math. J. 66(2), 295–307 (2017)
Budur, N., Wang, B.: Local systems on analytic germ complements. Adv. Math. 306, 905–928 (2017)
Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 265. xviii+249, Springer, Berlin (1984)
Gyoja, A.: Bernstein-Sato’s polynomial for several analytic functions. J. Math. Kyoto Univ. 33, 399–411 (1993)
Kaledin, D.: Normalization of a Poisson algebra is Poisson. Proc. Steklov Inst. Math. 264(1), 70–73 (2009)
Kashiwara, M.: \(B\)-functions and holonomic systems. Rationality of roots of \(B\)-functions. Invent. Math. 38(1): 33–53 (1976/77)
Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, pp. 134–142, Springer, Berlin (1983)
Kashiwara, M., Kawai, T.: On holonomic systems for \(\prod _{l=1}^N(f_l+\sqrt{-1}O)^{\lambda _l}\). Publ. Res. Inst. Math. Sci. 15(2), 551–575 (1979)
Loeser, F.: Fonctions zêta locales d’Igusa à plusieurs variables, intégration dans les fibres, et discriminants. Ann. Sci. École Norm. Sup. (4) 22(3), 435–471 (1989)
Maisonobe, P.: Filtration Relative, l’Idéal de Bernstein et ses pentes. arXiv:1610.03354
Malgrange, B.: Polynômes de Bernstein-Sato et cohomologie évanescente. Astérisque 101, 243 (1983)
Sabbah, C.: Proximité évanescente. I. Compositio Math. 62(3), 283–328 (1987)
Sabbah, C.: Proximité évanescente. II. Compositio Math. 64(2), 213–241 (1987)
Sabbah, C.: Modules d’Alexander et \({{\mathscr {D}}}\)-modules. Duke Math. J. 60(3), 729–814 (1990)
Walther, U.: The Jacobian module, the Milnor fiber, and the \({{\mathscr {D}}}\)-module generated by \(f^s\). Invent. Math. 207(3), 1239–1287 (2017)
Weibel, C.: An Introduction to Homological Algebra, p. xiv+450. Cambridge University Press, Cambridge (1994)
Wu, L., Zhou, P.: Log \({{\mathscr {D}}}\)-modules and index theorem, arXiv:1904.09276v1