Zeeman Spectroscopy in Penning Traps

Advances in Atomic, Molecular and Optical Physics - Tập 67 - Trang 257-296 - 2018
Günter Werth1, Sven Sturm2, Klaus Blaum2
1Johannes Gutenberg-Universität, Mainz, Germany
2Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Tài liệu tham khảo

Alonso, 2006, A miniature electron-beam ion source for in-trap creation of highly charged ions, Rev. Sci. Instrum., 77, 03A901, 10.1063/1.2162857 Angeli, 2013, Table of experimental nuclear ground state charge radii: an update, At. Data Nucl. Data Tables, 99, 69, 10.1016/j.adt.2011.12.006 Blatt, 2008, Entangled states of trapped atomic ions, Nature, 453, 1008, 10.1038/nature07125 Bluhm, 1998, CPT and Lorentz tests in Penning traps, Phys. Rev. D, 57, 3932, 10.1103/PhysRevD.57.3932 Bollinger, 1983, Precision measurements of laser cooled 9Be+ ions, 168 Bollinger, 1992, Precise measurement of the gJ factor of Mg+, Bull. Am. Phys. Soc., 37, 1117 Breit, 1928, The magnetic moment of the electron, Nature, 122, 649, 10.1038/122649a0 Brown, 1986, Geonium theory: physics of a single electron or ion in a Penning trap, Rev. Mod. Phys., 58, 233, 10.1103/RevModPhys.58.233 Cheng, 1985, Ab initio calculation of 4fN6s2 hyperfine structure in neutral rare-earth atoms, Phys. Rev. A, 31, 2775, 10.1103/PhysRevA.31.2775 Chwalla, 2009, Absolute frequency measurement of the 40Ca+4s2S1/2-3d2D5/2 clock transition, Phys. Rev. Lett., 102, 023002, 10.1103/PhysRevLett.102.023002 Dehmelt, 1986, Continuous Stern-Gerlach effect: principle and idealized apparatus, Proc. Natl. Acad. Sci., 83, 2291, 10.1073/pnas.83.8.2291 Dicke, 1953, The effect of collisions upon the Doppler width of spectral lines, Phys. Rev., 89, 472, 10.1103/PhysRev.89.472 Ding, 2016, Lorentz-violating spinor electrodynamics and Penning traps, Phys. Rev. D, 94, 056008, 10.1103/PhysRevD.94.056008 Eides, 2010, Universal binding and recoil corrections to bound state g factors in hydrogen-like ions, Phys. Rev. Lett., 105, 100402, 10.1103/PhysRevLett.105.100402 Gabrielse, 1989, Open-endcap Penning traps for high precision experiments, Int. J. Mass Spectrom. Ion Proc., 88, 319, 10.1016/0168-1176(89)85027-X Glazov, 2002, Finite nuclear size correction to the bound-electron g factor in a hydrogen-like atom, Phys. Lett. A, 297, 408, 10.1016/S0375-9601(02)00021-X Glazov, 2004, Relativistic and QED corrections to the g factor of Li-like ions, Phys. Rev. A, 70, 062104, 10.1103/PhysRevA.70.062104 Glazov, 2014, QED theory of the bound-electron magnetic moment, vol. 256, 137 González Martínez, 2007, The Heidelberg EBIT: present results and future perspectives, J. Phys. Conf. Ser., 72, 012001, 10.1088/1742-6596/72/1/012001 Häffner, 2000, High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogen-like carbon, Phys. Rev. Lett., 85, 5308, 10.1103/PhysRevLett.85.5308 Hanneke, 2008, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett., 100, 120801, 10.1103/PhysRevLett.100.120801 Hegstrom, 1979, g factors and related magnetic properties of molecules. Formulation of theory and calculations for H2+, HD+, and D2+, Phys. Rev. A, 19, 17, 10.1103/PhysRevA.19.17 Heisse, 2017, High-precision measurement of the proton's atomic mass, Phys. Rev. Lett., 119, 033001, 10.1103/PhysRevLett.119.033001 Hermanspahn, 2000, Observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion, Phys. Rev. Lett., 84, 427, 10.1103/PhysRevLett.84.427 Hoffman, 2013, Radio-frequency-spectroscopy measurement of the Landé gJ factor of the 5D5/2 state of Ba+ with a single trapped ion, Phys. Rev. A, 88, 025401, 10.1103/PhysRevA.88.025401 Huntemann, 2016, Single-ion atomic clock with 3×10−18 systematic uncertainty, Phys. Rev. Lett., 116, 063001, 10.1103/PhysRevLett.116.063001 Itano, 1985, Measurements of the gJ factors of the 6s2S1/2 and 6p2P1/2 states in 198Hg+, J. Opt. Soc. Am. B, 2, 1392, 10.1364/JOSAB.2.001392 Karshenboim, 2001, The g factor of a bound electron in a hydrogen-like atom, vol. 570, 651 Kinoshita, 2014, Tenth-order QED contribution to the electron g − 2 and high precision test of quantum electrodynamics, Int. J. Mod. Phys. A, 29, 1430003, 10.1142/S0217751X14300038 Kluge, 2008, HITRAP: a facility at GSI for highly charged ions, Adv. Quantum Chem., 53, 83, 10.1016/S0065-3276(07)53007-8 Knöll, 1996, Experimental gJ factor in the metastable 5D3/2 level of Ba+, Phys. Rev. A, 54, 1199, 10.1103/PhysRevA.54.1199 Köhler, 2016, Isotope dependence of the Zeeman effect in lithium-like calcium, Nat. Commun., 7, 10246, 10.1038/ncomms10246 Kusch, 1947, Precision measurement of the ratio of the atomic ‘g values’ in the 2P3/2 and 2P1/2 states of gallium, Phys. Rev., 72, 1256, 10.1103/PhysRev.72.1256.2 Lewty, 2013, Experimental determination of the nuclear magnetic octupole moment of 137Ba+ ion, Phys. Rev. A, 88, 012518, 10.1103/PhysRevA.88.012518 Lichtenberg, 1998, Axialisation, cooling and quenching of Ba+ ions in a Penning trap, Eur. Phys. J. D, 2, 29, 10.1007/s100530050106 Lindroth, 1993, Ab initio calculations of gj factors for Li, Be+, and Ba+, Phys. Rev. A, 47, 961, 10.1103/PhysRevA.47.961 Loch, 1988, Measurement of the electronic g factor of H2+, Phys. Rev. A, 38, 5484, 10.1103/PhysRevA.38.5484 Margolis, 2010, Optical frequency standards and clocks, Contemp. Phys., 51, 37, 10.1080/00107510903257616 Marx, 1998, Precise gJ- and gI-factor measurements of Ba+ isotopes, Eur. Phys. J. D, 4, 279, 10.1007/s100530050210 Mohr, 2012, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys., 84, 1527, 10.1103/RevModPhys.84.1527 Mooser, 2014, Direct high-precision measurement of the magnetic moment of the proton, Nature, 509, 596, 10.1038/nature13388 Mukherjee, 2008, ISOLTRAP: an on-line penning trap for mass spectrometry on short-lived nuclides, Eur. Phys. J. A, 35, 1, 10.1140/epja/i2007-10528-9 Pachucki, 2005, Complete two-loop correction to the bound-electron g factor, Phys. Rev. A, 72, 022108, 10.1103/PhysRevA.72.022108 Pruttivarasin, 2015, Michelson–Morley analogue for electrons using trapped ions to test Lorentz symmetry, Nature, 517, 592, 10.1038/nature14091 Rodegheri, 2012, An experiment for the direct determination of the g-factor of a single proton in a Penning trap, New J. Phys., 14, 063011, 10.1088/1367-2630/14/6/063011 Rosenband, 2008, Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, 319, 1808, 10.1126/science.1154622 Sahoo, 2017, Relativistic coupled-cluster-theory analysis of unusually large correlation effects in the determination of gj factors in Ca+, Phys. Rev. A, 96, 012511, 10.1103/PhysRevA.96.012511 Schneider, 2017, Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision, Science, 358, 1081, 10.1126/science.aan0207 Sellner, 2017, Improved limit on the directly measured antiproton lifetime, New J. Phys., 19, 083023, 10.1088/1367-2630/aa7e73 Shabaev, 2002, g factor of high-Z lithium-like ions, Phys. Rev. A, 65, 062104, 10.1103/PhysRevA.65.062104 Shabaev, 2006, g-factor of heavy ions: a new access to the fine structure constant, Phys. Rev. Lett., 96, 253002, 10.1103/PhysRevLett.96.253002 Smorra, 2015, BASE - the Baryon Antibaryon Symmetry Experiment, Eur. Phys. J. Spec. Top., 224, 3055, 10.1140/epjst/e2015-02607-4 Smorra, 2017, A parts-per-billion measurement of the antiproton magnetic moment, Nature, 550, 371, 10.1038/nature24048 Sturm, 2011, Phase-sensitive cyclotron frequency measurements at ultralow energies, Phys. Rev. Lett., 107, 143003, 10.1103/PhysRevLett.107.143003 Sturm, 2013, g-factor measurement of hydrogen-like 28Si13+ as a challenge to QED calculations, Phys. Rev. A, 87, 030501(R), 10.1103/PhysRevA.87.030501 Sturm, 2014, High-precision measurement of the atomic mass of the electron, Nature, 506, 467, 10.1038/nature13026 Sturm, 2017, High-precision measurements of the bound electron's magnetic moment, Atoms, 2017, 4, 10.3390/atoms5010004 Sushkov, 1978, The nature of the strongly forbidden M1 transitions and the g-factor anomalies in heavy atoms, Zh. Eksp. Teor. Fiz., 75, 75 Tommaseo, 2003, The gJ-factor in the ground state of Ca+, Eur. Phys. J. D, 25, 113, 10.1140/epjd/e2003-00096-6 Verdú, 2004, Electronic g factor of hydrogen-like oxygen 16O7+, Phys. Rev. Lett., 92, 093002, 10.1103/PhysRevLett.92.093002 Vogel, 2013, Aspects of fundamental physics in precision spectroscopy of highly charged ions in Penning traps, Ann. Phys., 525, 505, 10.1002/andp.201300032 Wagner, 2013, g factor of lithium-like silicon 28Si11+, Phys. Rev. Lett., 110, 033003, 10.1103/PhysRevLett.110.033003 Winkler, 1972, Magnetic moment of the proton in Bohr magnetons, Phys. Rev. A, 5, 83, 10.1103/PhysRevA.5.83 Yan, 2002, Calculations of magnetic moments for lithium-like ions, J. Phys. B: At. Mol. Opt. Phys., 35, 1885, 10.1088/0953-4075/35/8/307 Yerokhin, 2013, Two-loop QED corrections with closed fermion loops for the bound-electron g factor, Phys. Rev. A, 88, 042502, 10.1103/PhysRevA.88.042502