Zebrafish as a Model for Toxicological Perturbation of Yolk and Nutrition in the Early Embryo
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barker DJP. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(suppl 6):588S–95S. https://doi.org/10.1080/07315724.2004.10719428 .
Eriksson JG, Osmond C, Kajantie E, Forsén TJ, Barker DJP. Patterns of growth among children who later develop type 2 diabetes or its risk factors. Diabetologia. 2006;49(12):2853–8. https://doi.org/10.1007/s00125-006-0459-1 .
Haugen AC, Schug TT, Collman G, Heindel JJ. Evolution of DOHaD: the impact of environmental health sciences. J Dev Orig Health Dis. 2015;6(2):55–64. https://doi.org/10.1017/s2040174414000580 .
Susser M, Stein Z. Timing in prenatal nutrition: a reprise of the Dutch famine study. Nutr Rev. 1994;52(3):84–94.
Thomson AM, Billewicz WZ, Hytten FE. The assessment of fetal growth. BJOG Int J Obstet Gynaecol. 1968;75(9):903–16. https://doi.org/10.1111/j.1471-0528.1968.tb01615.x .
Bronson FH. Mammalian reproductive biology. University of Chicago Press; 1990.
Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(6):2954–9. https://doi.org/10.1210/jcem.87.6.8563 .
Link BA, Megason SG. Zebrafish as a model for development. In: Conn PM, editor. Sourcebook of Models for Biomedical Research. Totowa: Humana Press; 2008. p. 103–12. https://doi.org/10.1007/978-1-59745-285-4_13 .
Wilson C. Aspects of larval rearing. ILAR J. 2012;53(2):169–78. https://doi.org/10.1093/ilar.53.2.169 .
Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 5th ed. Eugene: Univ. of Oregon Press; 2007.
Kunz-Ramsay Y. Viviparity. Developmental Biology of Teleost Fishes Springer Science & Business Media; 2004.
Burton GJ, Hempstock J, Jauniaux E. Nutrition of the human fetus during the first trimester—a review. Placenta. 2001;22(Suppl A):S70–7. https://doi.org/10.1053/plac.2001.0639 .
• Miyares RL, de Rezende VB, Farber SA. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech. 2014;7(7):915–27. https://doi.org/10.1242/dmm.015800 . This paper presents a unique method to visualize embryonic uptake of fatty acids. This study specifically uses the fluorescent palmitate analog Bodipy C12 in the zebrafish.
• Marín-Juez R, Rovira M, Crespo D, van der Vaart M, Spaink HP, Planas JV. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish. J Cereb Blood Flow Metab. 2015;35(1):74–85. https://doi.org/10.1038/jcbfm.2014.171 . This paper presents a method to visualize uptake of glucose from the yolk using the glucose-analog 2-NBDG in zebrafish.
Zhou W, Hildebrandt F. Inducible podocyte injury and proteinuria in transgenic zebrafish. J Am Soc Nephrol: JASN. 2012;23(6):1039–47. https://doi.org/10.1681/asn.2011080776.
•• Fraher D, Sanigorski A, Mellett Natalie A, Meikle Peter J, Sinclair Andrew J, Gibert Y. Zebrafish embryonic Lipidomic analysis reveals that the yolk cell is metabolically active in Processing Lipid. Cell Rep. 2016;14(6):1317–29. This seminal paper presents the lipidomic composition of the zebrafish embryo’s yolk. It demonstrates that the yolk sac is able to process and metabolize lipids contained in the yolk.
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15–27. https://doi.org/10.1530/rep-13-0251 .
• Link V, Shevchenko A, Heisenberg C-P. Proteomics of early zebrafish embryos. BMC Dev Biol. 2006;6(1):1–9. https://doi.org/10.1186/1471-213x-6-1 . This paper defines the protein composition of the zebrafish embryo and yolk.
Denslow ND, Chow MC, Kroll KJ, Green L. Vitellogenin as a biomarker of exposure for estrogen or estrogen mimics. Ecotoxicology (Lond, Engl). 1999;8(5):385–98. https://doi.org/10.1023/a:1008986522208.
Ge C, Lu W, Chen A. Quantitative proteomic reveals the dynamic of protein profile during final oocyte maturation in zebrafish. Biochem Biophys Res Commun. 2017;490(3):657–63. https://doi.org/10.1016/j.bbrc.2017.06.093 .
Zhong L, Yuan L, Rao Y, Li Z, Zhang X, Liao T, et al. Distribution of vitellogenin in zebrafish (Danio rerio) tissues for biomarker analysis. Aquat Toxicol. 2014;149:1–7. https://doi.org/10.1016/j.aquatox.2014.01.022.
• Arukwe A, Goksøyr A. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol. 2003;2(1):4. https://doi.org/10.1186/1476-5926-2-4 . A comprehensive review of vitellogenesis in fish.
• Lubzens E, Bobe J, Young G, Sullivan CV. Maternal investment in fish oocytes and eggs: the molecular cargo and its contributions to fertility and early development. Aquaculture. 2017;472:107–43. https://doi.org/10.1016/j.aquaculture.2016.10.029 . A comprehensive review of vitellogenesis in fish.
Abrams EW, Mullins MC. Early zebrafish development: it’s in the maternal genes. Curr Opin Genet Dev. 2009;19(4):396–403. https://doi.org/10.1016/j.gde.2009.06.002 .
Rauwerda H, Wackers P, Pagano JFB, de Jong M, Ensink W, Dekker R, et al. Mother-specific signature in the maternal transcriptome composition of mature, unfertilized zebrafish eggs. PLoS One. 2016;11(1):e0147151. https://doi.org/10.1371/journal.pone.0147151 .
Hanisch K, Kuster E, Altenburger R, Gundel U. Proteomic signatures of the zebrafish (Danio Rerio) embryo: sensitivity and specificity in toxicity assessment of chemicals. Int J Proteomics. 2010;2010:1–13. https://doi.org/10.1155/2010/630134 .
Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29(14):2905–19. https://doi.org/10.1093/nar/29.14.2905 .
Wang J, Shi X, Du Y, Zhou B. Effects of xenoestrogens on the expression of vitellogenin (vtg) and cytochrome P450 aromatase (cyp19a and b) genes in zebrafish (Danio rerio) larvae. J Environ Sci Health A. 2011;46(9):960–7. https://doi.org/10.1080/10934529.2011.586253 .
• Matsuda Y, Ito Y, Hashimoto H, Yokoi H, Suzuki T. Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence Reprod Biol Endocrinol: RB&E. 2011;9:45-. doi: https://doi.org/10.1186/1477-7827-9-45 . This paper presents a method to quantify vitellogenin deposition into the yolk using a fluorometric probe.
Wang J, Zhao F, Shan R, Tian H, Wang W, Ru S. Juvenile zebrafish in the vitellogenin blank period as an alternative test organism for evaluation of estrogenic activity of chemicals. Environ Toxicol Chem. 2016;35(7):1783–7. https://doi.org/10.1002/etc.3328 .
Norman Haldén A, Nyholm JR, Andersson PL, Holbech H, Norrgren L. Oral exposure of adult zebrafish (Danio rerio) to 2,4,6-tribromophenol affects reproduction. Aquat Toxicol. 2010;100(1):30–7. https://doi.org/10.1016/j.aquatox.2010.07.010 .
Aluru N, Leatherland JF, Vijayan MM. Bisphenol a in oocytes leads to growth suppression and altered stress performance in juvenile rainbow trout. PLoS One. 2010;5(5):e10741. https://doi.org/10.1371/journal.pone.0010741 .
Keiter S, Baumann L, Färber H, Holbech H, Skutlarek D, Engwall M, et al. Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio). Aquat Toxicol. 2012;118:116–29. https://doi.org/10.1016/j.aquatox.2012.04.003 .
Uren-Webster TM, Lewis C, Filby AL, Paull GC, Santos EM. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquat Toxicol. 2010;99(3):360–9. https://doi.org/10.1016/j.aquatox.2010.05.015 .
Chow WS, Chan WK-L, Chan KM. Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A. J Appl Toxicol. 2013;33(7):670–8. https://doi.org/10.1002/jat.2723 .
Kausch U, Alberti M, Haindl S, Budczies J, Hock B. Biomarkers for exposure to estrogenic compounds: gene expression analysis in zebrafish (Danio rerio). Environ Toxicol. 2008;23(1):15–24. https://doi.org/10.1002/tox.20306 .
Yin P, Li Y-W, Chen Q-L, Liu Z-H. Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis. Aquat Toxicol. 2017;185:129–37. https://doi.org/10.1016/j.aquatox.2017.02.013 .
Christianson-Heiska I-L, Haavisto T, Paranko J, Bergelin E, Isomaa B. Effects of the wood extractives dehydroabietic acid and betulinol on reproductive physiology of zebrafish (Danio rerio)—a two-generation study. Aquat Toxicol. 2008;86(3):388–96. https://doi.org/10.1016/j.aquatox.2007.12.001 .
Lange A, Katsu Y, Miyagawa S, Ogino Y, Urushitani H, Kobayashi T, et al. Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. Aquat Toxicol. 2012;109:250–8. https://doi.org/10.1016/j.aquatox.2011.09.004 .
Örn S, Holbech H, Norrgren L. Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17α-ethinylestradiol and 17β-trenbolone. Environ Toxicol Pharmacol. 2016;41:225–31. https://doi.org/10.1016/j.etap.2015.12.010 .
Techer D, Milla S, Fontaine P, Viot S, Thomas M. Influence of waterborne gallic and pelargonic acid exposures on biochemical and reproductive parameters in the zebrafish (Danio rerio). Environ Toxicol. 2017;32(1):227–40. https://doi.org/10.1002/tox.22228 .
Paige Souder J, Gorelick DA. Quantification of estradiol uptake in zebrafish embryos and larvae. Toxicol Sci: Off J Soc Toxicol. 2017; https://doi.org/10.1093/toxsci/kfx107 .
Dolgova NV, Hackett MJ, MacDonald TC, Nehzati S, James AK, Krone PH, et al. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms. Metallomics. 2016;8(3):305–12. https://doi.org/10.1039/c5mt00279f .
Chen Y, Ren C, Ouyang S, Hu X, Zhou Q. Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid. Environ Sci Technol. 2015;49(16):10147–54. https://doi.org/10.1021/acs.est.5b02220 .
Choi S-A, Park CS, Kwon OS, Giong H-K, Lee J-S, Ha TH, et al. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish. Sci Rep. 2016;6(1):26203. https://doi.org/10.1038/srep26203 .
Assémat E, Vinot S, Gofflot F, Linsel-Nitschke P, Illien F, Châtelet F, et al. Expression and role of cubilin in the internalization of nutrients during the Peri-implantation development of the rodent embryo. Biol Reprod. 2005;72(5):1079–86. https://doi.org/10.1095/biolreprod.104.036913.
Ulhaq M, Sundström M, Larsson P, Gabrielsson J, Bergman Å, Norrgren L, et al. Tissue uptake, distribution and elimination of 14C-PFOA in zebrafish (Danio rerio). Aquat Toxicol. 2015;163:148–57. https://doi.org/10.1016/j.aquatox.2015.04.003 .
Choudhury S, Thomas JK, Sylvain NJ, Ponomarenko O, Gordon RA, Heald SM, et al. Selenium preferentially accumulates in the eye lens following embryonic exposure: a confocal X-ray fluorescence imaging study. Environ Sci Technol. 2015;49(4):2255–61. https://doi.org/10.1021/es503848s .
Den Broeder MJ, Kopylova VA, Kamminga LM, Legler J. Zebrafish as a model to study the role of peroxisome proliferating-activated receptors in adipogenesis and obesity. PPAR Res. 2015;2015:11. https://doi.org/10.1155/2015/358029 .
Michalik L, Desvergne B, Dreyer C, Gavillet M, Laurini RN, Wahli W. PPAR expression and function during vertebrate development. Int J Dev Biol. 2002;46(1):105–14.
Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431(7011):946–57. http://www.nature.com/nature/journal/v431/n7011/suppinfo/nature03025_S1.html
Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, Bardet P-L, et al. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet. 2007;3(11):e188. https://doi.org/10.1371/journal.pgen.0030188 .
Levi L, Ziv T, Admon A, Levavi-Sivan B, Lubzens E. Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish. Am J Physiol - Endocrinol Metab. 2012;302(6):E626–E44. https://doi.org/10.1152/ajpendo.00310.2011.
• Kalasekar SM, Zacharia E, Kessler N, Ducharme NA, Gustafsson J-Å, Kakadiaris IA, et al. Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation. Reprod Toxicol. 2015;55:20–9. https://doi.org/10.1016/j.reprotox.2014.10.022 . This paper presents the development of a high throughput screening method to quantify yolk area in the zebrafish embryo exposed to toxicants.
Raldúa D, André M, Babin PJ. Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish. Toxicol Appl Pharmacol. 2008;228(3):301–14. https://doi.org/10.1016/j.taap.2007.11.016 .
Duan J, Hu H, Zhang Y, Feng L, Shi Y, Miller MR, et al. Multi-organ toxicity induced by fine particulate matter PM2.5 in zebrafish (Danio rerio) model. Chemosphere. 2017;180:24–32. https://doi.org/10.1016/j.chemosphere.2017.04.013 .
Johnson A, Carew E, Sloman KA. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat Toxicol. 2007;84(4):431–8. https://doi.org/10.1016/j.aquatox.2007.07.003.
Almond KM, Trombetta LD. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos. Ecotoxicology (Lond, Engl). 2016;25(2):389–98. https://doi.org/10.1007/s10646-015-1597-3.
Sant KE, Jacobs HM, Borofski KA, Chen P, Park Y, Timme-Laragy AR. Pancreas development and nutrient uptake and utilization are disrupted by embryonic exposures to the environmental toxicant perfluorooctanesulfonic acid in the zebrafish. FASEB J. 2017;31(1 Supplement):792.8.
Hagedorn M, Kleinhans FW, Artemov D, Pilatus U. Characterization of a major permeability barrier in the zebrafish embryo1. Biol Reprod. 1998;59(5):1240–50. https://doi.org/10.1095/biolreprod59.5.1240 .
Hill AJ, Bello SM, Prasch AL, Peterson RE, Heideman W. Water permeability and TCDD-induced edema in zebrafish early-life stages2These authors contributed equally to this article. Toxicol Sci. 2004;78(1):78–87. https://doi.org/10.1093/toxsci/kfh056.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. https://doi.org/10.1002/aja.1002030302.
Chlebowski AC, Garcia GR, La Du JK, Bisson WH, Truong L, Massey Simonich SL, et al. Mechanistic investigations into the developmental toxicity of nitrated and heterocyclic PAHs. Toxicol Sci. 2017;157(1):246–59. https://doi.org/10.1093/toxsci/kfx035 .
Knecht AL, Goodale BC, Truong L, Simonich MT, Swanson AJ, Matzke MM, et al. Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol. 2013;271(2):266–75. https://doi.org/10.1016/j.taap.2013.05.006 .
Rousseau ME, Sant KE, Borden LR, Franks DG, Hahn ME, Timme-Laragy AR. Regulation of Ahr signaling by Nrf2 during development: effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio). Aquat Toxicol (Amsterdam, Neth). 2015;167:157–71. https://doi.org/10.1016/j.aquatox.2015.08.002.
Liu H, Nie F-H, Lin H-Y, Ma Y, Ju X-H, Chen J-J, et al. Developmental toxicity, EROD, and CYP1A mRNA expression in zebrafish embryos exposed to dioxin-like PCB126. Environ Toxicol. 2016;31(2):201–10. https://doi.org/10.1002/tox.22035 .
Chao S-J, Huang CP, Chen P-C, Huang C. Teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209) in the presence of nano-SiO2 particles. Chemosphere. 2017;178:449–57. https://doi.org/10.1016/j.chemosphere.2017.03.075 .
Shi G, Cui Q, Pan Y, Sheng N, Sun S, Guo Y, et al. 6:2 chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquat Toxicol. 2017;185:67–75. https://doi.org/10.1016/j.aquatox.2017.02.002 .
Li Y, Han Z, Zheng X, Ma Z, Liu H, Giesy JP, et al. Comparison of waterborne and in ovo nanoinjection exposures to assess effects of PFOS on zebrafish embryos. Environ Sci Pollut Res. 2015;22(3):2303–10. https://doi.org/10.1007/s11356-014-3527-y .
Sulukan E, Köktürk M, Ceylan H, Beydemir Ş, Işik M, Atamanalp M et al. An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio). Chemosphere 2017;180:77–85. doi: https://doi.org/10.1016/j.chemosphere.2017.04.018.
Suvarchala G, Philip GH. Toxicity of 3,5,6-trichloro-2-pyridinol tested at multiple stages of zebrafish (Danio rerio) development. Environ Sci Pollut Res. 2016;23(15):15515–23. https://doi.org/10.1007/s11356-016-6684-3 .
Pamanji R, Yashwanth B, Bethu MS, Leelavathi S, Ravinder K, Rao JV. Toxicity effects of profenofos on embryonic and larval development of zebrafish (Danio rerio). Environ Toxicol Pharmacol. 2015;39(2):887–97. https://doi.org/10.1016/j.etap.2015.02.020 .
Zhuang S, Zhang Z, Zhang W, Bao L, Xu C, Zhang H. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio). Aquat Toxicol. 2015;159:119–26. https://doi.org/10.1016/j.aquatox.2014.12.006 .
Oliveira JMM, Galhano V, Henriques I, Soares AMVM, Loureiro S. Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos. Environ Pollut. 2017;221:52–63. https://doi.org/10.1016/j.envpol.2016.10.028 .
Xu C, Tu W, Deng M, Jin Y, Lu B, Zhang C, et al. Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish. Chemosphere. 2016;164:618–26. https://doi.org/10.1016/j.chemosphere.2016.09.004 .
Cao F, Liu X, Wang C, Zheng M, Li X, Qiu L. Acute and short-term developmental toxicity of cyhalofop-butyl to zebrafish (Danio rerio). Environ Sci Pollut Res. 2016;23(10):10080–9. https://doi.org/10.1007/s11356-016-6236-x .
Choi JS, Kim R-O, Yoon S, Kim W-K. Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): a transcriptomic analysis. PLoS One. 2016;11(8):e0160763. https://doi.org/10.1371/journal.pone.0160763 .
Shaw BJ, Liddle CC, Windeatt KM, Handy RD. A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations. Arch Toxicol. 2016;90(9):2077–107. https://doi.org/10.1007/s00204-016-1734-7 .
Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, et al. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One. 2013;8(9):e74606. https://doi.org/10.1371/journal.pone.0074606 .
Nogales FF, Beltran E, Fernandez PL. The pathology of secondary human yolk sac in spontaneous abortion: findings in 103 cases. In: Fenoglio-Preiser CM, Wolff M, Rilke F, editors. Progress in Surgical Pathology: Volume XII. Berlin: Springer Berlin Heidelberg; 1992. p. 291–303.
Pinney SE, Mesaros CA, Snyder NW, Busch CM, Xiao R, Aijaz S, et al. Second trimester amniotic fluid bisphenol a concentration is associated with decreased birth weight in term infants. Reprod Toxicol. 2017;67:1–9. https://doi.org/10.1016/j.reprotox.2016.11.007 .
Watkins DJ, Milewski S, Domino SE, Meeker JD, Padmanabhan V. Maternal phthalate exposure during early pregnancy and at delivery in relation to gestational age and size at birth: a preliminary analysis. Reprod Toxicol (Elmsford, NY). 2016;65:59–66. https://doi.org/10.1016/j.reprotox.2016.06.021 .
Chen M-H, Ng S, Hsieh C-J, Lin C-C, Hsieh W-S, Chen P-C. The impact of prenatal perfluoroalkyl substances exposure on neonatal and child growth. Sci Total Environ. 2017;607–608:669–75. https://doi.org/10.1016/j.scitotenv.2017.06.273 .
Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Ye X, et al. Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth: examining mediation by maternal fasting glucose in the healthy start study. Environ Health Perspect. 2017;125(6):067016. https://doi.org/10.1289/ehp641.
Liu A, Qian N, Yu H, Chen R, Kan H. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China. Sci Total Environ. 2017;609:815–21. https://doi.org/10.1016/j.scitotenv.2017.07.174 .