Zarankiewiczʼs Conjecture is finite for each fixed m

Journal of Combinatorial Theory, Series B - Tập 103 - Trang 237-247 - 2013
Robin Christian1, R. Bruce Richter1, Gelasio Salazar2
1University of Waterloo, Waterloo, ON, N2L 3G1, Canada
2Universidad Autonoma de San Luis Potosi, San Luis Potosi, SLP 78000, Mexico

Tài liệu tham khảo

Beineke, 2010, The early history of the brick factory problem, Math. Intelligencer, 32, 41, 10.1007/s00283-009-9120-4 de Klerk, 2006, Improved bounds for the crossing numbers of Km,n and Kn, SIAM J. Discrete Math., 20, 189, 10.1137/S0895480104442741 de Klerk, 2007, Reduction of symmetric semidefinite programs using the regular ⁎-representation, Math. Program. Ser. B, 109, 613, 10.1007/s10107-006-0039-7 Diestel, 2005 Guy, 1969, The decline and fall of Zarankiewiczʼs theorem, 63 Hartsfield, 1990 Kleitman, 1970, The crossing number of K5,n, J. Combin. Theory, 9, 315, 10.1016/S0021-9800(70)80087-4 Turán, 1977, A note of welcome, J. Graph Theory, 1, 7, 10.1002/jgt.3190010105 Urbanik, 1955, Solution du problème posé par P. Turán, Colloq. Math., 3, 200 von zur Gathen, 1978, A bound on solutions of linear integer equalities and inequalities, Proc. Amer. Math. Soc., 72, 155, 10.1090/S0002-9939-1978-0500555-0 Woodall, 1993, Cyclic-order graphs and Zarankiewiczʼs crossing-number conjecture, J. Graph Theory, 17, 657, 10.1002/jgt.3190170602 Zarankiewicz, 1954, On a problem of P. Turán concerning graphs, Fund. Math., 41, 137, 10.4064/fm-41-1-137-145