ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering

Trends in Biotechnology - Tập 31 Số 7 - Trang 397-405 - 2013
Thomas Gaj1,2,3, Charles A. Gersbach4,5, Carlos F. Barbas1,2,3
1Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
2Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA/USA
3The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
4Department of Biomedical Engineering, Duke University, Durham, NC USA
5Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Capecchi, 2005, Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century, Nat. Rev. Genet., 6, 507, 10.1038/nrg1619

McManus, 2002, Gene silencing in mammals by small interfering RNAs, Nat. Rev. Genet., 3, 737, 10.1038/nrg908

Urnov, 2010, Genome editing with engineered zinc finger nucleases, Nat. Rev. Genet., 11, 636, 10.1038/nrg2842

Carroll, 2011, Genome engineering with zinc-finger nucleases, Genetics, 188, 773, 10.1534/genetics.111.131433

Wyman, 2006, DNA double-strand break repair: all's well that ends well, Annu. Rev. Genet., 40, 363, 10.1146/annurev.genet.40.110405.090451

Beerli, 2002, Engineering polydactyl zinc-finger transcription factors, Nat. Biotechnol., 20, 135, 10.1038/nbt0202-135

Liu, 1997, Design of polydactyl zinc-finger proteins for unique addressing within complex genomes, Proc. Natl. Acad. Sci. U.S.A., 94, 5525, 10.1073/pnas.94.11.5525

Beerli, 1998, Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks, Proc. Natl. Acad. Sci. U.S.A., 95, 14628, 10.1073/pnas.95.25.14628

Beerli, 2000, Positive and negative regulation of endogenous genes by designed transcription factors, Proc. Natl. Acad. Sci. U.S.A., 97, 1495, 10.1073/pnas.040552697

Kim, 1998, Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants, Proc. Natl. Acad. Sci. U.S.A., 95, 2812, 10.1073/pnas.95.6.2812

Segal, 2006, Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA, J. Mol. Biol., 363, 405, 10.1016/j.jmb.2006.08.016

Neuteboom, 2006, Effects of different zinc finger transcription factors on genomic targets, Biochem. Biophys. Res. Commun., 339, 263, 10.1016/j.bbrc.2005.11.011

Bhakta, 2013, Highly active zinc-finger nucleases by extended modular assembly, Genome Res., 23, 530, 10.1101/gr.143693.112

Kim, 2011, Preassembled zinc-finger arrays for rapid construction of ZFNs, Nat. Methods, 8, 7, 10.1038/nmeth0111-7a

Gonzalez, 2010, Modular system for the construction of zinc-finger libraries and proteins, Nat. Protoc., 5, 791, 10.1038/nprot.2010.34

Segal, 1999, Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences, Proc. Natl. Acad. Sci. U.S.A., 96, 2758, 10.1073/pnas.96.6.2758

Maeder, 2008, Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification, Mol. Cell, 31, 294, 10.1016/j.molcel.2008.06.016

Sander, 2011, Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA), Nat. Methods, 8, 67, 10.1038/nmeth.1542

Gupta, 2012, An optimized two-finger archive for ZFN-mediated gene targeting, Nat. Methods, 9, 588, 10.1038/nmeth.1994

Boch, 2009, Breaking the code of DNA binding specificity of TAL-type III effectors, Science, 326, 1509, 10.1126/science.1178811

Moscou, 2009, A simple cipher governs DNA recognition by TAL effectors, Science, 326, 1501, 10.1126/science.1178817

Mak, 2012, The crystal structure of TAL effector PthXo1 bound to its DNA target, Science, 335, 716, 10.1126/science.1216211

Deng, 2012, Structural basis for sequence-specific recognition of DNA by TAL effectors, Science, 335, 720, 10.1126/science.1215670

Christian, 2010, Targeting DNA double-strand breaks with TAL effector nucleases, Genetics, 186, 757, 10.1534/genetics.110.120717

Mussolino, 2011, A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity, Nucleic Acids Res., 39, 9283, 10.1093/nar/gkr597

Miller, 2011, A TALE nuclease architecture for efficient genome editing, Nat. Biotechnol., 29, 143, 10.1038/nbt.1755

Zhang, 2011, Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription, Nat. Biotechnol., 29, 149, 10.1038/nbt.1775

Mercer, 2012, Chimeric TALE recombinases with programmable DNA sequence specificity, Nucleic Acids Res., 40, 11163, 10.1093/nar/gks875

Cermak, 2011, Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Res., 39, e82, 10.1093/nar/gkr218

Reyon, 2012, FLASH assembly of TALENs for high-throughput genome editing, Nat. Biotechnol., 30, 460, 10.1038/nbt.2170

Briggs, 2012, Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers, Nucleic Acids Res., 40, e117, 10.1093/nar/gks624

Schmid-Burgk, 2013, A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes, Nat. Biotechnol., 31, 76, 10.1038/nbt.2460

Kim, 2013, A library of TAL effector nucleases spanning the human genome, Nat. Biotechnol., 31, 251, 10.1038/nbt.2517

Moehle, 2007, Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases, Proc. Natl. Acad. Sci. U.S.A., 104, 3055, 10.1073/pnas.0611478104

Orlando, 2010, Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology, Nucleic Acids Res., 38, e152, 10.1093/nar/gkq512

Chen, 2011, High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases, Nat. Methods, 8, 753, 10.1038/nmeth.1653

Santiago, 2008, Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases, Proc. Natl. Acad. Sci. U.S.A., 105, 5809, 10.1073/pnas.0800940105

Lee, 2010, Targeted chromosomal deletions in human cells using zinc finger nucleases, Genome Res., 20, 81, 10.1101/gr.099747.109

Sollu, 2010, Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion, Nucleic Acids Res., 38, 8269, 10.1093/nar/gkq720

Lee, 2012, Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases, Genome Res., 22, 539, 10.1101/gr.129635.111

Brunet, 2009, Chromosomal translocations induced at specified loci in human stem cells, Proc. Natl. Acad. Sci. U.S.A., 106, 10620, 10.1073/pnas.0902076106

Cristea, 2013, In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration, Biotechnol. Bioeng., 110, 871, 10.1002/bit.24733

Maresca, 2013, Obligate Ligation-Gated Recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining, Genome Res., 23, 539, 10.1101/gr.145441.112

Lombardo, 2007, Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery, Nat. Biotechnol., 25, 1298, 10.1038/nbt1353

Hockemeyer, 2009, Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases, Nat. Biotechnol., 27, 851, 10.1038/nbt.1562

Hockemeyer, 2011, Genetic engineering of human pluripotent cells using TALE nucleases, Nat. Biotechnol., 29, 731, 10.1038/nbt.1927

Ding, 2013, A TALEN genome-editing system for generating human stem cell-based disease models, Cell Stem Cell, 12, 238, 10.1016/j.stem.2012.11.011

Zou, 2009, Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells, Cell Stem Cell, 5, 97, 10.1016/j.stem.2009.05.023

Sanyal, 2012, The long-range interaction landscape of gene promoters, Nature, 489, 109, 10.1038/nature11279

Gutschner, 2011, Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases, Genome Res., 21, 1944, 10.1101/gr.122358.111

Dunham, 2012, An integrated encyclopedia of DNA elements in the human genome, Nature, 489, 57, 10.1038/nature11247

Miller, 2007, An improved zinc-finger nuclease architecture for highly specific genome editing, Nat. Biotechnol., 25, 778, 10.1038/nbt1319

Szczepek, 2007, Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases, Nat. Biotechnol., 25, 786, 10.1038/nbt1317

Doyon, 2011, Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures, Nat. Methods, 8, 74, 10.1038/nmeth.1539

Guo, 2010, Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases, J. Mol. Biol., 400, 96, 10.1016/j.jmb.2010.04.060

Sood, 2013, Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs, PLoS ONE, 8, e57239, 10.1371/journal.pone.0057239

Perez-Pinera, 2012, Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases, Nucleic Acids Res., 40, 3741, 10.1093/nar/gkr1214

Doyon, 2010, Transient cold shock enhances zinc-finger nuclease-mediated gene disruption, Nat. Methods, 7, 459, 10.1038/nmeth.1456

Certo, 2012, Coupling endonucleases with DNA end-processing enzymes to drive gene disruption, Nat. Methods, 9, 973, 10.1038/nmeth.2177

Kim, 2011, Surrogate reporters for enrichment of cells with nuclease-induced mutations, Nat. Methods, 8, 941, 10.1038/nmeth.1733

Kim, 2012, Precision genome engineering with programmable DNA-nicking enzymes, Genome Res., 22, 1327, 10.1101/gr.138792.112

Wang, 2012, Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme, Genome Res., 22, 1316, 10.1101/gr.122879.111

Ramirez, 2012, Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects, Nucleic Acids Res., 40, 5560, 10.1093/nar/gks179

McConnell Smith, 2009, Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease, Proc. Natl. Acad. Sci. U.S.A., 106, 5099, 10.1073/pnas.0810588106

Gaj, 2012, Targeted gene knockout by direct delivery of zinc-finger nuclease proteins, Nat. Methods, 9, 805, 10.1038/nmeth.2030

Doyon, 2008, Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases, Nat. Biotechnol., 26, 702, 10.1038/nbt1409

Sander, 2011, Targeted gene disruption in somatic zebrafish cells using engineered TALENs, Nat. Biotechnol., 29, 697, 10.1038/nbt.1934

Meng, 2008, Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases, Nat. Biotechnol., 26, 695, 10.1038/nbt1398

Tesson, 2011, Knockout rats generated by embryo microinjection of TALENs, Nat. Biotechnol., 29, 695, 10.1038/nbt.1940

Geurts, 2009, Knockout rats via embryo microinjection of zinc-finger nucleases, Science, 325, 433, 10.1126/science.1172447

Bibikova, 2003, Enhancing gene targeting with designed zinc finger nucleases, Science, 300, 764, 10.1126/science.1079512

Bibikova, 2002, Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases, Genetics, 161, 1169, 10.1093/genetics/161.3.1169

Morton, 2006, Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells, Proc. Natl. Acad. Sci. U.S.A., 103, 16370, 10.1073/pnas.0605633103

Merlin, 2013, Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases, Genome Res., 23, 159, 10.1101/gr.145599.112

Young, 2011, Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases, Proc. Natl. Acad. Sci. U.S.A., 108, 7052, 10.1073/pnas.1102030108

Carlson, 2012, Efficient TALEN-mediated gene knockout in livestock, Proc. Natl. Acad. Sci. U.S.A., 109, 17382, 10.1073/pnas.1211446109

Hauschild, 2011, Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases, Proc. Natl. Acad. Sci. U.S.A., 108, 12013, 10.1073/pnas.1106422108

Wood, 2011, Targeted genome editing across species using ZFNs and TALENs, Science, 333, 307, 10.1126/science.1207773

Bedell, 2012, In vivo genome editing using a high-efficiency TALEN system, Nature, 491, 114, 10.1038/nature11537

Zu, 2013, TALEN-mediated precise genome modification by homologous recombination in zebrafish, Nat. Methods, 10, 329, 10.1038/nmeth.2374

Zhang, 2010, High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases, Proc. Natl. Acad. Sci. U.S.A., 107, 12028, 10.1073/pnas.0914991107

Shukla, 2009, Precise genome modification in the crop species Zea mays using zinc-finger nucleases, Nature, 459, 437, 10.1038/nature07992

Townsend, 2009, High-frequency modification of plant genes using engineered zinc-finger nucleases, Nature, 459, 442, 10.1038/nature07845

Li, 2012, High-efficiency TALEN-based gene editing produces disease-resistant rice, Nat. Biotechnol., 30, 390, 10.1038/nbt.2199

Urnov, 2005, Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, 435, 646, 10.1038/nature03556

Li, 2011, In vivo genome editing restores haemostasis in a mouse model of haemophilia, Nature, 475, 217, 10.1038/nature10177

Zou, 2011, Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease, Blood, 118, 4599, 10.1182/blood-2011-02-335554

Sebastiano, 2011, In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases, Stem Cells, 29, 1717, 10.1002/stem.718

Yusa, 2011, Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells, Nature, 478, 391, 10.1038/nature10424

Soldner, 2011, Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations, Cell, 146, 318, 10.1016/j.cell.2011.06.019

Perez, 2008, Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases, Nat. Biotechnol., 26, 808, 10.1038/nbt1410

Holt, 2010, Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo, Nat. Biotechnol., 28, 839, 10.1038/nbt.1663

Voit, 2013, Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors, Mol. Ther., 21, 786, 10.1038/mt.2012.284

Torikai, 2012, A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR, Blood, 119, 5697, 10.1182/blood-2012-01-405365

Provasi, 2012, Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer, Nat. Med., 18, 807, 10.1038/nm.2700

DeKelver, 2010, Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome, Genome Res., 20, 1133, 10.1101/gr.106773.110

Lombardo, 2011, Site-specific integration and tailoring of cassette design for sustainable gene transfer, Nat. Methods, 8, 861, 10.1038/nmeth.1674

Wiedenheft, 2012, RNA-guided genetic silencing systems in bacteria and archaea, Nature, 482, 331, 10.1038/nature10886

Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829

Jinek, 2013, RNA-programmed genome editing in human cells, eLife, 2, e00471, 10.7554/eLife.00471

Cho, 2013, Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease, Nat. Biotechnol., 31, 230, 10.1038/nbt.2507

Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143

Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033

Hwang, 2013, Efficient genome editing in zebrafish using a CRISPR-Cas system, Nat. Biotechnol., 31, 227, 10.1038/nbt.2501

Jiang, 2013, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol., 31, 233, 10.1038/nbt.2508

Gabriel, 2011, An unbiased genome-wide analysis of zinc-finger nuclease specificity, Nat. Biotechnol., 29, 816, 10.1038/nbt.1948

Holkers, 2013, Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells, Nucleic Acids Res., 41, e63, 10.1093/nar/gks1446

Ellis, 2013, Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs, Gene Ther., 20, 35, 10.1038/gt.2011.211

Gaj, 2013, A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells, Nucleic Acids Res., 41, 3937, 10.1093/nar/gkt071

Gersbach, 2011, Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase, Nucleic Acids Res., 39, 7868, 10.1093/nar/gkr421

Gaj, 2011, Structure-guided reprogramming of serine recombinase DNA sequence specificity, Proc. Natl. Acad. Sci. U.S.A., 108, 498, 10.1073/pnas.1014214108

Beerli, 2000, Chemically regulated zinc finger transcription factors, J. Biol. Chem., 275, 32617, 10.1074/jbc.M005108200

Polstein, 2012, Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors, J. Am. Chem. Soc., 134, 16480, 10.1021/ja3065667

Perez-Pinera, 2013, Synergistic and tunable human gene activation by combinations of synthetic transcription factors, Nat. Methods, 10, 239, 10.1038/nmeth.2361

Maeder, 2013, Robust, synergistic regulation of human gene expression using TALE activators, Nat. Methods, 10, 243, 10.1038/nmeth.2366

Yant, 2007, Site-directed transposon integration in human cells, Nucleic Acids Res., 35, e50, 10.1093/nar/gkm089

Gersbach, 2010, Directed evolution of recombinase specificity by split gene reassembly, Nucleic Acids Res., 38, 4198, 10.1093/nar/gkq125

Owens, 2012, Chimeric piggyBac transposases for genomic targeting in human cells, Nucleic Acids Res., 40, 6978, 10.1093/nar/gks309

Handel, 2012, Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors, Hum. Gene Ther., 23, 321, 10.1089/hum.2011.140