Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation

Journal of Differential Equations - Tập 256 - Trang 3179-3207 - 2014
Xiaojing Xu1, Liutang Xue2
1School of Mathematical Sciences, Beijing Normal University and Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, PR China
2Université Paris-Est Marne-la-Vallée, Laboratorie d'Analyse et de Mathématiques Appliquées, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, Cedex 2, France

Tài liệu tham khảo

Bahouri, 2011, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 Brandolese, 2012, Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Amer. Math. Soc., 364, 5057, 10.1090/S0002-9947-2012-05432-8 Cao, 2013, Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208, 985, 10.1007/s00205-013-0610-3 Chandrasekhar, 1981 Chae, 2006, Global regularity for the 2-D Boussinesq equations with partial viscous terms, Adv. Math., 203, 497, 10.1016/j.aim.2005.05.001 Chae, 1999, Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations, Nagoya Math. J., 155, 55, 10.1017/S0027763000006991 Chen, 2007, A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271, 821, 10.1007/s00220-007-0193-7 Constantin, 2008, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 1103, 10.1016/j.anihpc.2007.10.001 Constantin, 2009, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 26, 159, 10.1016/j.anihpc.2007.10.002 Córdoba, 2004, A maximum principle applied to the quasi-geostrophic equations, Comm. Math. Phys., 249, 511, 10.1007/s00220-004-1055-1 Danchin, 2013, Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics, Proc. Amer. Math. Soc., 141, 1979, 10.1090/S0002-9939-2012-11591-6 Danchin, 2008, Le théorème de Leray et le théorème de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, 136, 261, 10.24033/bsmf.2557 Danchin, 2009, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys., 290, 1, 10.1007/s00220-009-0821-5 Danchin, 2011, Global existence results for the anisotropic Boussinesq system in dimensional two, Math. Models Methods Appl. Sci., 21, 421, 10.1142/S0218202511005106 Hmidi, 2011, On a maximum principle and its application to the logarithmically critical Boussinesq system, Anal. PDE, 4, 247, 10.2140/apde.2011.4.247 Hmidi, 2009, On the global well-posedness of the two-dimensional Boussinesq system with a zero viscosity, Indiana Univ. Math. J., 58, 1591, 10.1512/iumj.2009.58.3590 Hmidi, 2011, Global well-posedness for Euler–Boussinesq system with critical dissipation, Comm. Partial Differential Equations, 36, 420, 10.1080/03605302.2010.518657 Hmidi, 2010, On the global well-posedness of the Euler–Boussinesq system with fractional dissipation, Phys. D, 239, 1387, 10.1016/j.physd.2009.12.009 Hou, 2005, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst. Ser. A, 12, 1, 10.3934/dcds.2005.12.1 Jiu Ju, 2005, The maximal principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255, 161, 10.1007/s00220-004-1256-7 Larios Liu, 2010, Local well-posedness and blow-up criterion of the Boussinesq equations in critical Besov spaces, J. Math. Fluid Mech., 12, 280, 10.1007/s00021-008-0286-x Majda, 2002 Miao, 2011, On the global well-posedness of a class of Boussinesq–Navier–Stokes systems, NoDEA Nonlinear Differential Equations Appl., 18, 707, 10.1007/s00030-011-0114-5 Pedlosky, 1987 Vishik, 1998, Hydrodynamics in Besov spaces, Arch. Ration. Mech. Anal., 145, 197, 10.1007/s002050050128 Wang, 2011, A frequency localized maximum principle applied to the 2D quasi-geostrophic equation, Comm. Math. Phys., 301, 105, 10.1007/s00220-010-1144-2 J. Wu, X. Xu, Well-posedness and inviscid limits of the Boussinesq equations with fractional Laplacian dissipation, preprint. Wu, 2012, Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich's type data, J. Differential Equations, 253, 100, 10.1016/j.jde.2012.02.025 Xu, 2010, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion, Nonlinear Anal., 72, 677, 10.1016/j.na.2009.07.008 Yudovich, 1963, Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., 3, 1032