Yeast KEOPS complex regulates telomere length independently of its t6A modification function
Tài liệu tham khảo
Agari, 2008, X-ray crystal structure of a hypothetical Sua5 protein from Sulfolobus tokodaii strain 7, Proteins, 70, 1108, 10.1002/prot.21794
Azzalin, 2015, Telomere functions grounding on TERRA firma, Trends Cell Biol., 25, 29, 10.1016/j.tcb.2014.08.007
Ben-Aroya, 2008, Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae, Mol. Cell, 30, 248, 10.1016/j.molcel.2008.02.021
Bryan, 1997, Telomere dynamics and telomerase activity in in vitro immortalised human cells, Eur. J. Cancer, 33, 767, 10.1016/S0959-8049(97)00065-8
Chan, 2016, GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes, Nucleic Acids Res., 44, D184, 10.1093/nar/gkv1309
Collinet, 2011, Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project, J. Struct. Biol., 175, 147, 10.1016/j.jsb.2011.03.018
Costessi, 2012, The human EKC/KEOPS complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME, PLoS One, 7, 10.1371/journal.pone.0042822
Dandjinou, 2004, A phylogenetically based secondary structure for the yeast telomerase RNA, Curr. Biol., 14, 1148, 10.1016/j.cub.2004.05.054
Daugeron, 2011, Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs, Nucleic Acids Res., 39, 6148, 10.1093/nar/gkr178
de Lange, 2009, How telomeres solve the end-protection problem, Science, 326, 948, 10.1126/science.1170633
Deutsch, 2012, Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside, J. Biol. Chem., 287, 13666, 10.1074/jbc.M112.344028
Diede, 2001, Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere, Curr. Biol., 11, 1336, 10.1016/S0960-9822(01)00400-6
Downey, 2006, A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator, Cell, 124, 1155, 10.1016/j.cell.2005.12.044
Dzikowska, 2015, KAEA (SUDPRO), a member of the ubiquitous KEOPS/EKC protein complex, regulates the arginine catabolic pathway and the expression of several other genes in Aspergillus nidulans, Gene, 573, 310, 10.1016/j.gene.2015.07.066
El Yacoubi, 2011, A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification, EMBO J., 30, 882, 10.1038/emboj.2010.363
El Yacoubi, 2009, The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA, Nucleic Acids Res., 37, 2894, 10.1093/nar/gkp152
Evans, 1999, Est1 and Cdc13 as comediators of telomerase access, Science, 286, 117, 10.1126/science.286.5437.117
Faure, 2010, Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres, Mol. Cell, 38, 842, 10.1016/j.molcel.2010.05.016
Galperin, 2004, ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study, Nucleic Acids Res., 32, 5452, 10.1093/nar/gkh885
Goudsouzian, 2006, S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association, Mol. Cell, 24, 603, 10.1016/j.molcel.2006.10.005
Gustilo, 2008, tRNA's modifications bring order to gene expression, Curr. Opin. Microbiol., 11, 134, 10.1016/j.mib.2008.02.003
Hieter, 1989, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 122, 19, 10.1093/genetics/122.1.19
Hu, 2013, Telomerase-null survivor screening identifies novel telomere recombination regulators, PLoS Genet., 9, 10.1371/journal.pgen.1003208
Hurley, 1996, The sugar kinase/heat shock protein 70/actin super family: implications of conserved structure for mechanism, Annu. Rev. Biophys. Biomol. Struct., 25, 137, 10.1146/annurev.bb.25.060196.001033
Juhling, 2009, tRNAdb 2009: compilation of tRNA sequences and tRNA genes, Nucleic Acids Res., 37, D159, 10.1093/nar/gkn772
Kato, 2011, Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex, Genetics, 188, 871, 10.1534/genetics.111.128231
Kisseleva-Romanova, 2006, Yeast homolog of a cancer-testis antigen defines a new transcription complex, EMBO J., 25, 3576, 10.1038/sj.emboj.7601235
Kristoffersen, 2000, Bacterial toxin-antitoxin gene system as containment control in yeast cells, Appl. Environ. Microbiol., 66, 5524, 10.1128/AEM.66.12.5524-5526.2000
Kuratani, 2011, Crystal structure of Sulfolobus tokodaii Sua5 complexed with L-threonine and AMPPNP, Proteins, 79, 2065, 10.1002/prot.23026
Kyriakou, 2016, Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae, BMC Biol., 14, 106, 10.1186/s12915-016-0325-7
Larrivee, 2004, The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex, Genes Dev., 18, 1391, 10.1101/gad.1199404
Lauhon, 2012, Mechanism of N6-threonylcarbamoyladenonsine (t6A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP, Biochemistry, 51, 8950, 10.1021/bi301233d
Le, 1999, RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase, Genetics, 152, 143, 10.1093/genetics/152.1.143
Lemieux, 2016, Active yeast telomerase shares subunits with ribonucleoproteins RNase P and RNase MRP, Cell, 165, 1171, 10.1016/j.cell.2016.04.018
Lin, 2010, The Sua5 protein is essential for normal translational regulation in yeast, Mol. Cell. Biol., 30, 354, 10.1128/MCB.00754-09
Lopreiato, 2004, Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin, Biochem. J., 377, 395, 10.1042/bj20030638
Lundblad, 1993, An alternative pathway for yeast telomere maintenance rescues Est1-senescence, Cell, 73, 347, 10.1016/0092-8674(93)90234-H
Maicher, 2014, Breaking new ground: digging into TERRA function, Biochim. Biophys. Acta, 1839, 387, 10.1016/j.bbagrm.2014.03.012
Mao, 2008, Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine, Mol. Cell, 32, 259, 10.1016/j.molcel.2008.10.002
McEachern, 2006, Break-induced replication and recombinational telomere elongation in yeast, Annu. Rev. Biochem., 75, 111, 10.1146/annurev.biochem.74.082803.133234
Meng, 2010, Sua5p is required for telomere recombination in Saccharomyces cerevisiae, Cell Res., 20, 495, 10.1038/cr.2010.34
Meng, 2009, Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication, EMBO J., 28, 1466, 10.1038/emboj.2009.92
Nichols, 2013, Crystal structure of the dimer of two essential Salmonella typhimurium proteins, YgjD & YeaZ and calorimetric evidence for the formation of a ternary YgjD-YeaZ-YjeE complex, Protein Sci., 22, 628, 10.1002/pro.2247
Oberto, 2009, Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance, Nucleic Acids Res., 37, 5343, 10.1093/nar/gkp557
Pardo, 2005, Rap1 prevents telomere fusions by nonhomologous end joining, EMBO J., 24, 3117, 10.1038/sj.emboj.7600778
Peng, 2015, Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity, PLoS Genet., 11, 10.1371/journal.pgen.1005071
Perrochia, 2013, In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya, Nucleic Acids Res., 41, 1953, 10.1093/nar/gks1287
Perrochia, 2013, Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification, Nucleic Acids Res., 41, 9484, 10.1093/nar/gkt720
Pfeiffer, 2013, Replication of telomeres and the regulation of telomerase, Cold Spring Harb. Perspect. Biol., 5, 10.1101/cshperspect.a010405
Podlevsky, 2008, The telomerase database, Nucleic Acids Res., 36, D339, 10.1093/nar/gkm700
Ribeyre, 2012, Anticheckpoint pathways at telomeres in yeast, Nat. Struct. Mol. Biol., 19, 307, 10.1038/nsmb.2225
Singer, 1994, Tlc1: template RNA component of Saccharomyces cerevisiae telomerase, Science, 266, 404, 10.1126/science.7545955
Srinivasan, 2011, The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A, EMBO J., 30, 873, 10.1038/emboj.2010.343
Takata, 2005, Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae, Mol. Cell, 17, 573, 10.1016/j.molcel.2005.01.014
Thiaville, 2014, Cross kingdom functional conservation of the core universally conserved threonylcarbamoyladenosine tRNA synthesis enzymes, Eukaryot. Cell, 13, 1222, 10.1128/EC.00147-14
Thiaville, 2016, Global translational impacts of the loss of the tRNA modification t6A in yeast, Microb. Cell, 3, 29, 10.15698/mic2016.01.473
Tsang, 1983, Sequence specificity of tRNA-modifying enzymes: an analysis of 258 tRNA sequences, Biochim. Biophys. Acta, 741, 180, 10.1016/0167-4781(83)90058-1
Wan, 2017, Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7, Nucleic Acids Res., 45, 805, 10.1093/nar/gkw1181
Wan, 2013, Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system, Nucleic Acids Res., 41, 6332, 10.1093/nar/gkt322
Wellinger, 2012, Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end, Genetics, 191, 1073, 10.1534/genetics.111.137851
Wu, 2011, The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro, Proc. Natl. Acad. Sci. U. S. A., 108, 20362, 10.1073/pnas.1100281108
Wu, 2017, Rad6-Bre1-mediated H2B ubiquitination regulates telomere replication by promoting telomere-end resection, Nucleic Acids Res., 45, 3308, 10.1093/nar/gkx101
Yarian, 2002, Accurate translation of the genetic code depends on tRNA modified nucleosides, J. Biol. Chem., 277, 16391, 10.1074/jbc.M200253200
Zappulla, 2004, Yeast telomerase RNA: a flexible scaffold for protein subunits, Proc. Natl. Acad. Sci. U.S.A., 101, 10024, 10.1073/pnas.0403641101
Zhang, 2015, Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex, Nucleic Acids Res., 43, 3358, 10.1093/nar/gkv155
Zhou, 2013, Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote, Nucleic Acids Res., 41, 302, 10.1093/nar/gks982