Yarn Hairiness Prediction by Generalized Regression Neural Network based on Harris Hawk Optimization
Tóm tắt
Yarn hairiness is an important indicator of yarn quality. It affects not only the quality of yarn but also the woven and knitted performance of yarn and the quality of the fabric produced. The prediction of yarn hairiness index can effectively prevent errors in produced fabrics, but yarn hairiness prediction is a complex nonlinear problem, and the use of a simple prediction model cannot meet the need for yarn hairiness prediction accuracy. Therefore, the main objective of this study is to introduce a new metaheuristic optimization method, namely Harris Hawk Optimization, to improve the accuracy of yarn hairiness prediction by generalized regression neural network. The smoothing factor in the generalized regression neural network is optimally selected by Harris Hawk Optimization, which in turn improves the accuracy of prediction. The experimental results show that the generalized neural network using Harris Hawk Optimization has very high accuracy in predicting yarn hairiness. In this regard, its root mean square error and mean absolute error criteria are 0.05568 and 0.03872, respectively.
Tài liệu tham khảo
citation_journal_title=J. Inst. Eng. India Ser. E; citation_title=Yarn Strength CV prediction using principal component analysis and automatic relevance determination on bayesian platform; citation_author=B Zhang, J Song, Y Wang; citation_volume=102; citation_publication_date=2021; citation_pages=189-202; citation_doi=10.1007/s40034-021-00216-2; citation_id=CR1
citation_journal_title=Text. Res. J.; citation_title=An artificial neural network-based hairiness prediction model for worsted wool yarns; citation_author=Z Khan, AEK Lim, L Wang; citation_volume=79; citation_issue=8; citation_publication_date=2009; citation_pages=714-720; citation_doi=10.1177/0040517508094171; citation_id=CR2
citation_journal_title=Fibres Text. East. Eur.; citation_title=Study of the hairiness of polyester-viscose blended yarns. Part III-predicting yarn hairiness using an artificial neural network; citation_author=E Haghighat, MS Johari, SM Etrati; citation_volume=1; citation_issue=90; citation_publication_date=2012; citation_pages=33-38; citation_id=CR3
citation_journal_title=Text. Res. J.; citation_title=The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines; citation_author=EC Doran, C Sahin; citation_volume=90; citation_issue=13–14; citation_publication_date=2020; citation_pages=1558-1580; citation_doi=10.1177/0040517519896761; citation_id=CR4
citation_journal_title=J. Inst. Eng. India Ser. E; citation_title=Study of yarn quality prediction model based on fuzzy comprehensive evaluation; citation_author=Y Wang, J Song, T Fan; citation_publication_date=2022; citation_doi=10.1007/s40034-022-00238-4; citation_id=CR5
citation_journal_title=Text. Res. J.; citation_title=Evaluation of yarn appearance on a blackboard based on image processing; citation_author=L Wang, Y Lu, R Pan; citation_volume=91; citation_issue=19–20; citation_publication_date=2021; citation_pages=2263-2271; citation_doi=10.1177/00405175211002863; citation_id=CR6
citation_journal_title=Text. Res. J.; citation_title=Prediction of yarn strength based on an expert weighted neural network optimized by particle swarm optimization; citation_author=B Zhang, J Song, S Zhao; citation_volume=91; citation_issue=23–24; citation_publication_date=2021; citation_pages=2911-2924; citation_doi=10.1177/00405175211022619; citation_id=CR7
citation_journal_title=J. Eng. Fiber. Fabr.; citation_title=Prediction of yarn unevenness based on BMNN; citation_author=H Jiang, J Song, B Zhang; citation_publication_date=2021; citation_doi=10.1177/15589250211037978; citation_id=CR8
citation_journal_title=IEEE T. Neural Networks; citation_title=A general regression neural network; citation_author=DF Specht; citation_volume=2; citation_issue=6; citation_publication_date=1991; citation_pages=568-576; citation_doi=10.1109/72.97934; citation_id=CR9
S Anbazhagan, N Kumarappant. A temporal input based day-ahead price forecasting in Asia's first liberalized electricity market using GRNN. (2011). Doi:
https://doi.org/10.1049/cp.2011.0332
Z Yang, G Xu, J Wang, Transport volume forecast based on GRNN network. (2010). Doi:
https://doi.org/10.1109/ICFCC.2010.5497475
X Kuang, C Wu, Y Huang, et al. Traffic flow combination forecasting based on grey model and GRNN, (2010). Doi:
https://doi.org/10.1109/ICICTA.2010.812
Z Leng, J Gao, Y Qin, et al. Short-term forecasting model of traffic flow based on GRNN, (2013). Doi:
https://doi.org/10.1109/CCDC.2013.6561614
citation_journal_title=Sustain. Comput. Infor.; citation_title=RBFNN versus GRNN modeling approach for sub-surface evaporation rate prediction in arid region; citation_author=AH Kamel, HA Afan, M Sherif; citation_volume=30; citation_publication_date=2021; citation_id=CR14
X Cheng, C Gao, C Hu, et al. Temperature and Humidity-Weighted-Modified GRNN Based Prediction Model of Photovoltaic Power Generation. Doi:
https://doi.org/10.1109/ICICT50816.2021.9358552
citation_journal_title=Sustainability-Basel; citation_title=Forecast of electric vehicle sales in the world and China based on PCA-GRNN; citation_author=M Wu, W Chen; citation_volume=14; citation_issue=4; citation_publication_date=2022; citation_pages=2206; citation_doi=10.3390/su14042206; citation_id=CR16
citation_journal_title=Model. Earth Syst. Environ.; citation_title=GRNN-based models for hydraulic jumps in a straight rectangular compound channel; citation_author=A Benabdesselam, L Houichi, B Achour; citation_volume=8; citation_issue=2; citation_publication_date=2021; citation_pages=1-12; citation_id=CR17
citation_journal_title=J. Food Process Eng.; citation_title=Prediction method of shelf life of damaged Korla fragrant pears; citation_author=S Yu, H Lan, X Li; citation_volume=44; citation_issue=12; citation_publication_date=2021; citation_doi=10.1111/jfpe.13902; citation_id=CR18
citation_journal_title=Future Gener. Comp. Sy.; citation_title=Harris hawks optimization: Algorithm and applications; citation_author=AA Heidari, S Mirjalili, H Faris; citation_volume=97; citation_publication_date=2019; citation_pages=849-872; citation_doi=10.1016/j.future.2019.02.028; citation_id=CR19
citation_journal_title=J. Clean. Prod.; citation_title=Harris hawk optimization-based MPPT control for PV systems under partial shading conditions; citation_author=M Mansoor, AF Mirza, Q Ling; citation_volume=274; citation_publication_date=2020; citation_doi=10.1016/j.jclepro.2020.122857; citation_id=CR20
citation_journal_title=IEEE Access; citation_title=Satellite image de-noising with harris hawks meta heuristic optimization algorithm and improved adaptive generalized gaussian distribution threshold function; citation_author=NA Golilarz, H Gao, H Demirel; citation_volume=7; citation_publication_date=2019; citation_pages=57459-57468; citation_doi=10.1109/ACCESS.2019.2914101; citation_id=CR21
citation_journal_title=Eng. Computer-Germany; citation_title=A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability; citation_author=H Moayedi, A Osouli, H Nguyen; citation_volume=37; citation_issue=1; citation_publication_date=2021; citation_pages=369-379; citation_doi=10.1007/s00366-019-00828-8; citation_id=CR22