YIG magnonics

Journal Physics D: Applied Physics - Tập 43 Số 26 - Trang 264002 - 2010
A. A. Serga1, Belita Koiller1, B. Hillebrands1
1Fachbereich Physik [Kaiserslautern]

Tóm tắt

Early experiments in magnonics were made using ferrite samples, largely due to the intrinsically low magnetic (spin-wave) damping in these materials. Historically, magnonic phenomena were studied on micrometre to millimetre length scales. Today, the principal challenge in applied magnonics is to create sub-micrometre devices using modern polycrystalline magnetic alloys. However, until certain technical obstacles are overcome in these materials, ferrites—in particular yttrium iron garnet (YIG)—remain a valuable source of insight. At a time when interest in magnonic systems is particularly strong, it is both useful and timely to review the main scientific results of YIG magnonics of the last two decades, and to discuss the transferability of the concepts and ideas learned in ferrite materials to modern nano-scale systems.

Từ khóa


Tài liệu tham khảo

1990, Phys. Rev., 41, 530, 10.1103/PhysRevB.41.530

1990, Phys. Rev., 42, 6839, 10.1103/PhysRevB.42.6839

1996, J. Magn. Magn. Mater., 161, 199, 10.1016/S0304-8853(96)00019-4

1997, J. Appl. Phys., 81, 4993, 10.1063/1.364881

2006, J. Magn. Magn. Mater., 306, 191, 10.1016/j.jmmm.2006.02.242

2008, Phys. Rev., 78, 054406, 10.1103/PhysRevB.78.054406

1963, Phys. Rev., 129, 1105, 10.1103/PhysRev.129.1105

1991, Sov. Phys.-Usp., 34, 843, 10.1070/PU1991v034n10ABEH002523

1993, J. Phys.: Condens. Matter, 5, 4215, 10.1088/0953-8984/5/25/011

2005, J. Exp. Theor. Phys., 100, 77, 10.1134/1.1866200

2008, Phys. Rev. Lett., 100, 047204, 10.1103/PhysRevLett.100.047204

2008, Appl. Phys. Lett., 92, 232503, 10.1063/1.2945000

2009, Phys. Rev., 79, 054417, 10.1103/PhysRevB.79.054417

2009, Phys. Rev. Lett., 102, 177207, 10.1103/PhysRevLett.102.177207

1968, J. Appl. Phys., 39, 3060, 10.1063/1.1656733

1966, Phys. Status Solidi, 16, K11, 10.1002/pssb.19660160138

2008, J. Phys. D: Appl. Phys., 41, 164012, 10.1088/0022-3727/41/16/164012

2009, Appl. Phys. Lett., 95, 262508, 10.1063/1.3279138

1957, Acta Crystallogr., 10, 239, 10.1107/S0365110X57000729

1993, Phys. Rep.-Rev. Sec. Phys. Lett., 229, 81

1981

1994, 10.1142/9789814355810

1994, 10.1007/978-3-642-75295-7

1994, 10.1142/9789814343121

1995, 10.1142/2406

2009

1988, Proc. IEEE, 76, 121, 10.1109/5.4389

1988, Proc. IEEE, 76, 188, 10.1109/5.4394

1973, Phys. Status Solidi, 17, K65, 10.1002/pssa.2210170156

1975, Appl. Phys. A-Mater. Sci. Process., 6, 367

1968, J. Appl. Phys., 39, 565, 10.1063/1.2163521

2001, Phys. Rep.-Rev. Sec. Phys. Lett., 348, 441

1958, J. Phys. Chem. Solids, 5, 202, 10.1016/0022-3697(58)90068-4

1970

1971, Appl. Phys. Lett., 19, 486, 10.1063/1.1653784

1972, Cryst. Growth, 17, 302, 10.1016/0022-0248(72)90261-8

1988, Proc. IEEE, 76, 151, 10.1109/5.4391

1988, Proc. IEEE, 76, 159, 10.1109/5.4392

1988, Proc. IEEE, 76, 171, 10.1109/5.4393

1960, Phys. Rev., 118, 1208, 10.1103/PhysRev.118.1208

1961, J. Phys. Chem. Solids, 19, 308, 10.1016/0022-3697(61)90041-5

1965, J. Appl. Phys., 36, 3453, 10.1063/1.1703018

1993, 10.1007/978-1-4613-9338-2

1996

1989

1980, IEE Proc. H-Microw. Opt. Antennas, 127, 4, 10.1049/ip-h-1.1980.0002

1986, J. Phys. C: Solid State Phys., 19, 7013, 10.1088/0022-3719/19/35/014

2008, Phys. Rev., 77, 214411, 10.1103/PhysRevB.77.214411

2009, Appl. Phys. Lett., 95, 112509, 10.1063/1.3231875

2004, Appl. Phys. Lett., 85, 2866, 10.1063/1.1803621

2006, Appl. Phys. Lett., 89, 063506, 10.1063/1.2335627

2009, Rev. Sci. Instrum., 80, 043903, 10.1063/1.3115210

2008, Phys. Rev. Lett., 101, 137204, 10.1103/PhysRevLett.101.137204

1962, Phys. Rev. Lett., 8, 357, 10.1103/PhysRevLett.8.357

1964, J. Appl. Phys., 35, 167, 10.1063/1.1713060

2004, Phys. Rev. Lett., 93, 047201, 10.1103/PhysRevLett.93.047201

2007, Phys. Rev., 76, 184419, 10.1103/PhysRevB.76.184419

2009, Appl. Phys. Lett., 94, 042503, 10.1063/1.3074501

2008, Phys. Rev., 78, 054410, 10.1103/PhysRevB.78.054410

2007, Phys. Rev. Lett., 99, 127204, 10.1103/PhysRevLett.99.127204

2010, Europhys. Lett., 90, 27003, 10.1209/0295-5075/90/27003

2009, Appl. Phys. Lett., 94, 112501, 10.1063/1.3098407

2005, Appl. Phys. Lett., 87, 153501, 10.1063/1.2089147

2008, Appl. Phys. Lett., 92, 022505, 10.1063/1.2834714

1992

2005, Science, 309, 1688, 10.1126/science.1108813

2009, Appl. Phys. Lett., 94, 252502, 10.1063/1.3159628

2005, Superlatt. Microstruct., 38, 184, 10.1016/j.spmi.2005.07.001

2008, IEEE Trans. Magn., 44, 2141, 10.1109/TMAG.2008.2000812

2008, J. Nanoelectron. Optoelectron., 3, 69, 10.1166/jno.2008.010

1985, Circ. Syst. Sign. Proc., 4, 157, 10.1007/BF01600078

1984, IEEE Trans. Magn., MAG-20, 1272, 10.1109/TMAG.1984.1063494

2007, Appl. Phys. Lett., 90, 092503, 10.1063/1.2709909

2008, Appl. Phys. Lett., 92, 132504, 10.1063/1.2904697

2009, Appl. Phys. Lett., 94, 083112, 10.1063/1.3089839

2009, Phys. Rev. Lett., 102, 127202, 10.1103/PhysRevLett.102.127202

2008, Phys. Rev., 77, 054437, 10.1103/PhysRevB.77.054437

2005, J. Appl. Phys., 98, 014304, 10.1063/1.1935764

1976, Appl. Phys. Lett., 29, 388, 10.1063/1.89098

1977, Appl. Phys. Lett., 30, 667, 10.1063/1.89279

1978, IEEE Trans. Microw. Theory Tech., 26, 1039, 10.1109/TMTT.1978.1129542

2008, Appl. Phys. Lett., 93, 022508, 10.1063/1.2963027

2009, J. Appl. Phys., 105, 083906, 10.1063/1.3098258

2009, Appl. Phys. Lett., 94, 172511, 10.1063/1.3127227

2010, Appl. Phys. Lett., 96, 082505, 10.1063/1.3318258

2003, JETP Lett., 77, 567, 10.1134/1.1595698

2005, JETP, 101, 636, 10.1134/1.2103224

2007, Nature Mater., 6, 862, 10.1038/nmat1994

2007, Nature Mater., 6, 799, 10.1038/nmat2036

2009, J. Phys. D: Appl. Phys., 42, 205005, 10.1088/0022-3727/42/20/205005

1989, Sov. Phys.-Tech. Phys., 34, 666

1996, J. Appl. Phys., 79, 5730, 10.1063/1.362233

2010, Phys. Rev., 81, 140404, 10.1103/PhysRevB.81.140404

1952, Phys. Rev., 85, 699, 10.1103/PhysRev.85.699

1954, Phys. Rev., 93, 72, 10.1103/PhysRev.93.72

1955, Phys. Rev., 100, 1788, 10.1103/PhysRev.100.1788

1956, Proc. IRE, 44, 1270, 10.1109/JRPROC.1956.274950

1957, J. Phys. Chem. Solids, 1, 209, 10.1016/0022-3697(57)90010-0

1960, J. Appl. Phys., 31, 386S, 10.1063/1.1984759

2009, Appl. Phys. Lett., 94, 192502, 10.1063/1.3130088

1998, JETP Lett., 67, 913, 10.1134/1.567767

1993, Zh. Techn. Fiz., 63, 122

2002, Techn. Phys. Lett., 28, 369, 10.1134/1.1482739

1969, J. Appl. Phys., 40, 1422, 10.1063/1.1657701

1972, JETP Lett., 16, 2

1974, IEEE Trans. Microw. Theory Tech., MTT-22, 918, 10.1109/TMTT.1974.1128386

1978, IEEE Trans. Magn., MAG-14, 811, 10.1109/TMAG.1978.1060014

1978, J. Appl. Phys., 49, 3554, 10.1063/1.325215

1982, J. Appl. Phys., 53, 5979, 10.1063/1.331406

1989, Russ. Phys. J., 32, 1

2009, Phys. Rev. Lett., 102, 147202, 10.1103/PhysRevLett.102.147202

2009, J. Appl. Phys., 106, 123909, 10.1063/1.3267152

1965, Appl. Phys. Lett., 6, 152, 10.1063/1.1754211

1966, IEEE Trans. Son. Ultrason., su-13, 84, 10.1109/T-SU.1966.29385

1984, JETP Lett., 39, 146

1990, Sov. Phys.-Tech. Phys., 35, 943

1997, Phys. Rev. Lett., 79, 2137, 10.1103/PhysRevLett.79.2137

1998, Phys. Rev. Lett., 80, 1976, 10.1103/PhysRevLett.80.1976

1999, IEEE Trans. Magn., 35, 3157, 10.1109/20.801113

1996, JETP Lett., 64, 171, 10.1134/1.567170

1999, JETP, 89, 1189, 10.1134/1.559071

1974, Sov. Phys.-JETP, 40, 689

2001, Phys. Rev., 63, 066607, 10.1103/PhysRevE.63.066607

2003, J. Appl. Phys., 93, 8585, 10.1063/1.1557855

2003, Nature, 426, 159, 10.1038/nature02042

2003, JETP Lett., 77, 300, 10.1134/1.1577761

2006, JETP, 102, 497, 10.1134/S1063776106030125

1983, Sov. Phys.-JETP Lett., 38, 413

1998, Phys. Rev. Lett., 81, 3769, 10.1103/PhysRevLett.81.3769

2004, Phys. Rev. Lett., 92, 117203, 10.1103/PhysRevLett.92.117203

2002, Phys. Status Solidi, 189, 1007, 10.1002/1521-396X(200202)189:3<1007::AID-PSSA1007>3.0.CO;2-S

2000, J. Signal Process, 4, 201

2000, Phys. Rev. Lett., 84, 3438, 10.1103/PhysRevLett.84.3438

2001, Mater. Sci. Forum, 376, 785, 10.4028/www.scientific.net/MSF.373-376.785

2001, Mater. Sci. Forum, 373-376, 377, 10.4028/www.scientific.net/MSF.373-376.377

1985, 10.1007/978-3-540-38959-0

2005, Phys. Rev. Lett., 94, 167202, 10.1103/PhysRevLett.94.167202

2006, J. Appl. Phys., 99, 08P513, 10.1063/1.2172184

2006, J. Magn. Magn. Mater., 300, e41, 10.1016/j.jmmm.2005.10.143

1981, Proc. IEEE, 69, 1539, 10.1109/PROC.1981.12200

1965, Phys. Rev. Lett., 14, 254, 10.1103/PhysRevLett.14.254

1969, J. Appl. Phys., 40, 1164, 10.1063/1.1657576

1973, Russ. Phys. J., 16, 316

1969, Phys. Rev., 181, 829, 10.1103/PhysRev.181.829

1991, Phys. Rev. Lett., 66, 1626, 10.1103/PhysRevLett.66.1626

1994, JETP Lett., 59, 437

1988

2004, JETP, 99, 1193, 10.1134/1.1854806

1964

2003, J. Appl. Phys., 93, 8594, 10.1063/1.1557857

2004, IEEE Trans. Magn., 40, 2814, 10.1109/TMAG.2004.834207

2004, Phys. Rev., 70, 224407, 10.1103/PhysRevB.70.224407

2005, J. Appl. Phys., 98, 074908, 10.1063/1.2077842

2007, Phys. Rev., 76, 054412, 10.1103/PhysRevB.76.054412

2001, Phys. Rev. Lett., 86, 4918, 10.1103/PhysRevLett.86.4918

2004, J. Magn. Magn. Mater., 272-276, 991, 10.1016/j.jmmm.2003.12.044

2007, Phys. Rev. Lett., 99, 227202, 10.1103/PhysRevLett.99.227202

2009, Phys. Rev., 79, 014405, 10.1103/PhysRevB.79.014405

2008, Appl. Phys. Lett., 92, 162514, 10.1063/1.2917590