Xenon postconditioning làm giảm chấn thương thần kinh sau tổn thương thiếu máu/ tái tưới máu tủy sống thông qua việc nhắm mục tiêu vào apoptosis liên quan đến stress lưới nội chất

Springer Science and Business Media LLC - Tập 46 - Trang 1-13 - 2023
Lan Luo1, Yuqing Wang2, Jiaqi Tong1, Lu Li1, Yanbing Zhu3, Mu Jin1
1Department of Anesthesiology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
2Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
3Beijing Clinical Research Institute, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China

Tóm tắt

Mục đích của nghiên cứu này là khám phá các cơ chế tiềm ẩn của khí xenon (Xe) trong việc bảo vệ chống lại tổn thương thiếu máu/tái tưới máu tủy sống (SCIRI). Mô hình chuột SCIRI được tạo ra bằng cách chặn động mạch bụng trong 85 phút và sau đó thực hiện tái tưới máu. Hệ thống điều hòa hậu xenon (50% Xe) được sử dụng 1 giờ sau khi tái tưới máu trong 1 giờ. Tại các thời điểm tái tưới máu (2, 4, 6, và 24 giờ), chuột được điều trị bằng các quét tủy sống bằng MRI để đánh giá thời gian đỉnh của tổn thương tủy sống sau SCIRI. Tiếp theo, chất ức chế stress lưới nội chất, natri 4-phenylbutyrate (4-PBA), được tiêm trong bụng hàng ngày (50 mg/kg) trong 5 ngày trước SCIRI. Sau 4 giờ tái tưới máu, các chức năng vận động, nhuộm huỳnh quang miễn dịch, nhuộm hematoxylin và eosin (HE), nhuộm Nissl, nhuộm TUNEL, phản ứng chuỗi polymerase phiên mã ngược thời gian thực (RT-PCR), và phân tích western blot đã được thực hiện để điều tra các tác dụng bảo vệ của Xe chống lại SCIRI. Trong mô hình chuột I/R, phù nề tủy sống đạt đỉnh tại thời điểm tái tưới máu 4 giờ. SCIRI kích hoạt stress lưới nội chất, mà được phát hiện ở các tế bào thần kinh. Xe postconditioning đáng kể đã làm giảm chức năng vận động của chi sau, giảm tỷ lệ apoptosis thần kinh, tăng số lượng tế bào thần kinh bình thường, và ức chế sự biểu hiện của protein liên quan đến stress lưới nội chất trong tủy sống. Hơn nữa, sự xâm nhập của chất ức chế stress lưới nội chất 4-PBA đã làm giảm mạnh tỷ lệ apoptosis do stress lưới nội chất sau SCIRI. Hệ thống điều hòa hậu Xe ức chế sự kích hoạt stress lưới nội chất, góp phần làm giảm SCIRI bằng cách подавляем apoptosis thần kinh.

Từ khóa

#xenon #tổn thương tủy sống #thiếu máu/tái tưới máu #stress lưới nội chất #apoptosis #chuột thí nghiệm

Tài liệu tham khảo

Gaudino M, Khan FM, Rahouma M, Naik A, Hameed I, Spadaccio C, Robinson NB, Ruan Y, Demetres M, Oakley CT, Gambardella I, Iannacone EM, Lau C, Girardi LN (2022) Spinal cord injury after open and endovascular repair of descending thoracic and thoracoabdominal aortic aneurysms: a meta-analysis. J Thorac Cardiovasc Surg 163(2):552–564. https://doi.org/10.1016/j.jtcvs.2020.04.126 Tenorio ER, Oderich GS, Farber MA, Schneider DB, Timaran CH, Schanzer A, Beck AW, Motta F, Sweet MP, Fenestrated US, Branched Aortic Research Consortium I (2020) Outcomes of endovascular repair of chronic postdissection compared with degenerative thoracoabdominal aortic aneurysms using fenestrated-branched stent grafts. J Vasc Surg 72(3):822–836 e829. https://doi.org/10.1016/j.jvs.2019.10.091 Hou J, Li H, Xue C, Ma J (2022) Lidocaine relieves spinal cord ischemia-reperfusion injury via long non-coding RNA MIAT-mediated Notch1 downregulation. J Biochem 171(4):411–420. https://doi.org/10.1093/jb/mvab150 Jing N, Fang B, Li Z, Tian A (2020) Exogenous activation of cannabinoid-2 receptor modulates TLR4/MMP9 expression in a spinal cord ischemia reperfusion rat model. J Neuroinflammation 17(1):101. https://doi.org/10.1186/s12974-020-01784-7 Rong Y, Fan J, Ji C, Wang Z, Ge X, Wang J, Ye W, Yin G, Cai W, Liu W (2022) USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ 29(6):1164–1175. https://doi.org/10.1038/s41418-021-00907-8 Li Q, Gao S, Kang Z, Zhang M, Zhao X, Zhai Y, Huang J, Yang GY, Sun W, Wang J (2018) Rapamycin enhances mitophagy and attenuates apoptosis after spinal ischemia-reperfusion injury. Front Neurosci 12:865. https://doi.org/10.3389/fnins.2018.00865 Li Y, Lin S, Xu C, Zhang P, Mei X (2018) Triggering of autophagy by baicalein in response to apoptosis after spinal cord injury: possible involvement of the PI3K activation. Biol Pharm Bull 41(4):478–486. https://doi.org/10.1248/bpb.b17-00768 Gu C, Li L, Huang Y, Qian D, Liu W, Zhang C, Luo Y, Zhou Z, Kong F, Zhao X, Liu H, Gao P, Chen J, Yin G (2020) Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy. Oxid Med Cell Longev 2020:3549704. https://doi.org/10.1155/2020/3549704 Lu X, Lv C, Zhao Y, Wang Y, Li Y, Ji C, Wang Z, Ye W, Yu S, Bai J, Cai W (2022) TSG-6 released from adipose stem cells-derived small extracellular vesicle protects against spinal cord ischemia reperfusion injury by inhibiting endoplasmic reticulum stress. Stem Cell Res Ther 13(1):291. https://doi.org/10.1186/s13287-022-02963-4 Chen X, Cubillos-Ruiz JR (2021) Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 21(2):71–88. https://doi.org/10.1038/s41568-020-00312-2 Hu H, Tian M, Ding C, Yu S (2018) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 9:3083. https://doi.org/10.3389/fimmu.2018.03083 Kong FJ, Ma LL, Guo JJ, Xu LH, Li Y, Qu S (2018) Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci (Lond) 132(1):111–125. https://doi.org/10.1042/CS20171432 Xu L, Bi Y, Xu Y, Wu Y, Du X, Mou Y, Chen J (2021) Suppression of CHOP reduces neuronal apoptosis and rescues cognitive impairment induced by intermittent hypoxia by inhibiting Bax and Bak activation. Neural Plast 2021:4090441. https://doi.org/10.1155/2021/4090441 Wu C, Xu H, Li J, Hu X, Wang X, Huang Y, Li Y, Sheng S, Wang Y, Xu H, Ni W, Zhou K (2020) Baicalein attenuates pyroptosis and endoplasmic reticulum stress following spinal cord ischemia-reperfusion injury via autophagy enhancement. Front Pharmacol 11:1076. https://doi.org/10.3389/fphar.2020.01076 Jin Z, Piazza O, Ma D, Scarpati G, De Robertis E (2019) Xenon anesthesia and beyond: pros and cons. Minerva Anestesiol 85(1):83–89. https://doi.org/10.23736/S0375-9393.18.12909-9 Campos-Pires R, Onggradito H, Ujvari E, Karimi S, Valeo F, Aldhoun J, Edge CJ, Franks NP, Dickinson R (2020) Xenon treatment after severe traumatic brain injury improves locomotor outcome, reduces acute neuronal loss and enhances early beneficial neuroinflammation: a randomized, blinded, controlled animal study. Crit Care 24(1):667. https://doi.org/10.1186/s13054-020-03373-9 Liang M, Ahmad F, Dickinson R (2022) Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: a preclinical systematic review and meta-analysis. Br J Anaesth 129(2):200–218. https://doi.org/10.1016/j.bja.2022.04.016 De Deken J, Rex S, Monbaliu D, Pirenne J, Jochmans I (2016) The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Crit Care Med 44(9):e886–e896. https://doi.org/10.1097/CCM.0000000000001717 Ma D, Lim T, Xu J, Tang H, Wan Y, Zhao H, Hossain M, Maxwell PH, Maze M (2009) Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol 20(4):713–720. https://doi.org/10.1681/ASN.2008070712 Stoppe C, Ney J, Brenke M, Goetzenich A, Emontzpohl C, Schalte G, Grottke O, Moeller M, Rossaint R, Coburn M (2016) Sub-anesthetic xenon increases erythropoietin levels in humans: a randomized controlled trial. Sports Med 46(11):1753–1766. https://doi.org/10.1007/s40279-016-0505-1 Liu S, Yang Y, Jin M, Hou S, Dong X, Lu J, Cheng W (2016) Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation AKT and ERK signaling pathways in rats. J Neurol Sci 368:277–284. https://doi.org/10.1016/j.jns.2016.07.009 Yang YW, Wang YL, Lu JK, Tian L, Jin M, Cheng WP (2018) Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors. Neural Regen Res 13(3):510–517. https://doi.org/10.4103/1673-5374.228757 Fang H, Yang M, Pan Q, Jin HL, Li HF, Wang RR, Wang QY, Zhang JP (2021) MicroRNA-22-3p alleviates spinal cord ischemia/reperfusion injury by modulating M2 macrophage polarization via IRF5. J Neurochem 156(1):106–120. https://doi.org/10.1111/jnc.15042 You YD, Deng WH, Guo WY, Zhao L, Mei FC, Hong YP, Zhou Y, Yu J, Xu S, Wang WX (2019) 4-Phenylbutyric acid attenuates endoplasmic reticulum stress-mediated intestinal epithelial cell apoptosis in rats with severe acute pancreatitis. Dig Dis Sci 64(6):1535–1547. https://doi.org/10.1007/s10620-018-5437-1 Hong YP, Deng WH, Guo WY, Shi Q, Zhao L, You YD, Mei FC, Zhou Y, Wang CY, Chen C, Yu J, Wang WX (2018) Inhibition of endoplasmic reticulum stress by 4-phenylbutyric acid prevents vital organ injury in rat acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 315(5):G838–G847. https://doi.org/10.1152/ajpgi.00102.2018 Sun F, Zhang H, Shi J, Huang T, Wang Y (2021) Astragalin protects against spinal cord ischemia reperfusion injury through attenuating oxidative stress-induced necroptosis. Biomed Res Int 2021:7254708. https://doi.org/10.1155/2021/7254708 Zhao L, Zhai M, Yang X, Guo H, Cao Y, Wang D, Li P, Liu C (2019) Dexmedetomidine attenuates neuronal injury after spinal cord ischaemia-reperfusion injury by targeting the CNPY2-endoplasmic reticulum stress signalling. J Cell Mol Med 23(12):8173–8183. https://doi.org/10.1111/jcmm.14688 Fu J, Sun H, Wei H, Dong M, Zhang Y, Xu W, Fang Y, Zhao J (2020) Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3beta pathway in rats. J Orthop Surg Res 15(1):275. https://doi.org/10.1186/s13018-020-01790-8 Veldeman M, Coburn M, Rossaint R, Clusmann H, Nolte K, Kremer B, Hollig A (2017) Xenon reduces neuronal hippocampal damage and alters the pattern of microglial activation after experimental subarachnoid hemorrhage: a randomized controlled animal trial. Front Neurol 8:511. https://doi.org/10.3389/fneur.2017.00511 Liu F, Liu S, Patterson TA, Fogle C, Hanig JP, Slikker W Jr, Wang C (2020) Effects of xenon-based anesthetic exposure on the expression levels of polysialic acid neural cell adhesion molecule (PSA-NCAM) on human neural stem cell-derived neurons. Mol Neurobiol 57(1):217–225. https://doi.org/10.1007/s12035-019-01771-x Yang YW, Lu JK, Qing EM, Dong XH, Wang CB, Zhang J, Zhao LY, Gao ZF, Cheng WP (2012) Post-conditioning by xenon reduces ischaemia-reperfusion injury of the spinal cord in rats. Acta Anaesthesiol Scand 56(10):1325–1331. https://doi.org/10.1111/j.1399-6576.2012.02718.x Zhang Y, Zhang M, Liu S, Zhu W, Yu J, Cui Y, Pan X, Gao X, Wang Q, Sun H (2019) Xenon exerts anti-seizure and neuroprotective effects in kainic acid-induced status epilepticus and neonatal hypoxia-induced seizure. Exp Neurol 322:113054. https://doi.org/10.1016/j.expneurol.2019.113054 Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18(7):499–521. https://doi.org/10.1038/s41569-021-00511-w Zhang S, Yan Y, Wang Y, Sun Z, Han C, Qian X, Ren X, Feng Y, Cai J, Xia C (2021) Inhibition of MALT1 alleviates spinal ischemia/reperfusion injury-induced neuroinflammation by modulating glial endoplasmic reticulum stress in rats. J Inflamm Res 14:4329–4345. https://doi.org/10.2147/JIR.S319023 Zhao J, Wang L, Li Y (2017) Electroacupuncture alleviates the inflammatory response via effects on M1 and M2 macrophages after spinal cord injury. Acupunct. in. Med 35(3):224–230. https://doi.org/10.1136/acupmed-2016-011107 Chen Z, Guo H, Lu Z, Sun K, Jin Q (2019) Hyperglycemia aggravates spinal cord injury through endoplasmic reticulum stress mediated neuronal apoptosis, gliosis and activation. Biomed Pharmacother 112:108672. https://doi.org/10.1016/j.biopha.2019.108672 Zhu H, Zhou H (2021) Novel insight into the role of endoplasmic reticulum stress in the pathogenesis of myocardial ischemia-reperfusion injury. Oxid Med Cell Longev 2021:5529810. https://doi.org/10.1155/2021/5529810 Li CF, Pan YK, Gao Y, Shi F, Wang YC, Sun XQ (2019) Autophagy protects HUVECs against ER stress-mediated apoptosis under simulated microgravity. Apoptosis 24(9-10):812–825. https://doi.org/10.1007/s10495-019-01560-w Carpio MA, Michaud M, Zhou W, Fisher JK, Walensky LD, Katz SG (2015) BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proceedings of the National Academy of Sciences 112(23):7201–7206. https://doi.org/10.1073/pnas.1421063112 Tian Y, Wang L, Qiu Z, Xu Y, Hua R (2021) Autophagy triggers endoplasmic reticulum stress and C/EBP homologous protein-mediated apoptosis in OGD/R-treated neurons in a caspase-12-independent manner. J Neurophysiol 126(5):1740–1750. https://doi.org/10.1152/jn.00649.2020 He Q, Wang T, Ni H, Liu Q, An K, Tao J, Chen Y, Xu L, Zhu C, Yao M (2019) Endoplasmic reticulum stress promoting caspase signaling pathway-dependent apoptosis contributes to bone cancer pain in the spinal dorsal horn. Mol Pain 15:1744806919876150. https://doi.org/10.1177/1744806919876150 Zhang M, Du H, Huang Z, Zhang P, Yue Y, Wang W, Liu W, Zeng J, Ma J, Chen G, Wang X, Fan J (2018) Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem Biol Interact 292:65–75. https://doi.org/10.1016/j.cbi.2018.06.013