XFEM schemes for level set based structural optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224
Bendsoe M P. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202
Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885–896
Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods. Journal of Computational Physics, 2000, 163(2): 489–528
Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227–246
Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363–393
Liu Z, Korvink J G, Huang R. Structure topology optimization: fully coupled level set method via FEMLAB. Structural Multidisciplinary Optimization, 2005, 29(6): 407–417
Jang G W, Kim Y Y. Sensitivity analysis for fixed-grid shape optimization by using oblique boundary curve approximation. International Journal of Solids and Structures, 2005, 42(11,12): 3591–3609
Belytschko T, Fish J, Bayliss A. The spectral overlay on finite elements for problems with high gradients. Computer Methods in Applied Mechanics and Engineering, 1990, 81(1): 71–89
Wang S Y, Wang M Y. A moving superimposed finite element method for structural topology optimization. International Journal for Numerical Methods in Engineering, 2006, 65(11): 1892–1922
Belytschko T, Xiao S P, Parimi C. Topology optimization with implicit functions and regularization. International Journal for Numerical Methods in Engineering, 2003, 57(8): 1177–1196
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150
Duysinx P, Van Miegroet L, Jacobs T, Fleury C. Generalized shape optimization using XFEM and level set methods. In: Proceedings of IUTAM Symposium on Topological Design, Optimization of Structures, Machines and Materials. Berlin: Springer, 2006, 23–32
Van Miegroet L, Jacobs T, Duysinx P. Recent developments in fixed mesh optimization with X-FEM and level set description. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization. Seoul, Korea, 2007, 1947–1956
Van Miegroet L, Duysinx P. 3D shape optimization with X-FEM and a level set constructive geometry approach. In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal, 2009, 1453–1463
Van Miegroet L, Duysinx P. Stress concentration minimization of 2DFilets using X-FEM and level set description. Structural and Multidisciplinary Optimization, 2007, 33(4–5): 425–438
Edwards C S, Kim H A, Budd C J. Smooth boundary based optimization using fixed grid. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea, 2007, 1789–1798
Lee D K, Lipka A, Ramm E. Nodal-based topology optimization using X-FEM and level sets. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea, 2007, 1987–1996
Wei P, Wang M Y, Xing X H. A study on X-FEM in continuum structural optimization using level set model. Computer Aided Design, 2010, 42(8): 708–719
Ventura G. On the elimination of quadrature sub-cells for discontinuous functions in the eXtended Finite Element Method. International Journal for Numerical Methods in Engineering, 2006, 66(5): 761–795
Natarajan S, Mahapatra D R, Bordas S P. Integrating strong and weak discontinuities without integration sub-cells and example applications in an XFEM/GFEM framework. International Journal for Numerical Methods in Engineering, 2010, 83: 269–294
Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48: 1741–1760
Sukumar N, Chopp D L, Moës N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46–47): 6183–6200
Wells G N, Sluys L J, de Borst R. Simulating the propagation of displacement discontinuities in a regularized strain-softening medium. International Journal for Numerical Methods in Engineering, 2002, 53(5): 1235–1256
Stazi F L, Budyn E, Chessa J, Belytschko T. An extended finite element method with higher order elements for curved cracks. Computational Mechanics, 2003, 31(1–2): 38–48
Legay A, Wang H W, Belytschko T. Strong and weak arbitrary discontinuities in spectral finite elements. International Journal for Numerical Methods in Engineering, 2005, 64(8): 991–1008
Cheng K W, Fries T P. Higher order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering, 2010, 82: 564–590
Sethian J A. Level Set Methods and Fast Marching Methods. London: Cambridge University Press, 1999
Osher S, Fedkiw R P. Level Set, Methods and Dynamic Implicit Surface. New York: Springer-Verlag, 2002
Fries T P, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010, 84: 253–304
Chessa J, Smolinski P, Belytschko T. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 2002, 53(8): 1959–1977
Fries T P. The intrinsic XFEM for two-fluid flows. International Journal for Numerical Methods in Fluids, 2009, 60(4): 437–471
Moës N, Cloirec M, Cartraud P, Remacle J F. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3163–3177
Duddu R, Bordas S, Chopp D, Moran B. A combined extended finite element and level set method for biofilm growth. International Journal for Numerical Methods in Engineering, 2008, 74(5): 848–870
Legay A, Chessa J, Belytschko T. An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17–18): 2070–2087
Young W C, Budynas R G. Roark’s Formulas for Stress and Strain. 7th ed. New York: McGraw-Hill, 2002
Peterson R E. Stress Concentration Design Factors. New York: Wiley, 1953
Belegundu A D, Chandrupatla T R. Optimization Concepts and Applications in Engineering. New Jersey: Prentice Hall, 1999