XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron

Journal of Synchrotron Radiation - Tập 23 Số 6 - Trang 1538-1549 - 2016
Frederico A. Lima1, M. E. Saleta1, R. J. S. Pagliuca1, Marcos A. S. Eleotério1, R. D. dos Reis1, Jairo Fonseca Júnior1, Bernd Meyer1, E. M. Bittar2, N. M. Souza-Neto1, E. Granado3
1Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971 Campinas, SP, Brazil
2Centro Brasileiro de Pesquisas Físicas, Rua Doutor Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro (RJ), Brazil
3Instituto de Física `Gleb Wataghin', Universidade de Campinas, CEP 13083-859, Campinas (SP), Brazil

Tóm tắt

The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage-ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X-ray spectrum (above ∼10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi-purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X-ray absorption spectroscopy at energies above 18 keV and high-resolution diffraction experiments. More recently, new setups and photon-hungry experiments such as total X-ray scattering, X-ray diffraction under high pressures, resonant X-ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.

Từ khóa


Tài liệu tham khảo

Agnihotri, 2014, RSC Adv., 4, 3974, 10.1039/C3RA44507K

Alonso-Mori, 2012, Rev. Sci. Instrum., 83, 073114, 10.1063/1.4737630

Alonso-Mori, 2015, J. Synchrotron Rad., 22, 612, 10.1107/S1600577515004488

Ament, 2011, Rev. Mod. Phys., 83, 705, 10.1103/RevModPhys.83.705

Bastús, 2014, Chem. Mater., 26, 2836, 10.1021/cm500316k

Beckwith, 2011, Inorg. Chem., 50, 8397, 10.1021/ic200970t

Bergamaschi, 2010, J. Synchrotron Rad., 17, 653, 10.1107/S0909049510026051

Bergmann, 2001, J. Synchrotron Rad., 8, 199, 10.1107/S0909049500016484

Bergmann, 1999, Chem. Phys. Lett., 302, 119, 10.1016/S0009-2614(99)00095-0

Billinge, 2004, Z. Kristallogr., 219, 117, 10.1524/zkri.219.3.117.29094

Boita, 2014, J. Phys. Chem. C, 118, 5538, 10.1021/jp410147p

Boubnov, 2014, J. Am. Chem. Soc., 136, 13006, 10.1021/ja5062505

Cezar, 2013, J. Phys. Conf. Ser., 425, 072015, 10.1088/1742-6596/425/7/072015

Craievich, 1997, Braz. J. Phys., 27, 417, 10.1590/S0103-97331997000400002

Döring, 2004, Phys. Rev. B, 70, 085115, 10.1103/PhysRevB.70.085115

Dykhne, 2011, Pharm. Res., 28, 1041, 10.1007/s11095-010-0350-0

Egami, T. & Billinge, S. (2003). Editors. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 1st ed. New York: Pergamon.

Eisenberger, 1976, Phys. Rev. Lett., 36, 623, 10.1103/PhysRevLett.36.623

Farrow, 2007, J. Phys. Condens. Matter, 19, 335219, 10.1088/0953-8984/19/33/335219

Figueroa, 2013, J. Appl. Cryst., 46, 1523, 10.1107/S0021889813018839

Gallo, 2014, Adv. Mater., 26, 7730, 10.1002/adma.201304994

Gamblin, 2001, J. Electron Spectrosc. Relat. Phenom., 113, 179, 10.1016/S0368-2048(00)00416-3

Glatzel, 2005, Coord. Chem. Rev., 249, 65, 10.1016/j.ccr.2004.04.011

Glatzel, 2004, J. Am. Chem. Soc., 126, 9946, 10.1021/ja038579z

Glatzel, 2013, J. Electron Spectrosc. Relat. Phenom., 188, 17, 10.1016/j.elspec.2012.09.004

Groot, 2001, Chem. Rev., 101, 1779, 10.1021/cr9900681

Groot, F. de & Kotani, A. (2008). Core Level Spectroscopy of Solids. Boca Raton: CRC Press.

Guimarães, 2009, J. Synchrotron Rad., 16, 69, 10.1107/S0909049508034870

Hall, 2014, J. Am. Chem. Soc., 136, 10076, 10.1021/ja504206y

Hämäläinen, 1991, Phys. Rev. Lett., 67, 2850, 10.1103/PhysRevLett.67.2850

Hammersley, 1996, High. Press. Res., 14, 235, 10.1080/08957959608201408

Haverkamp, 2009, J. Synchrotron Rad., 16, 849, 10.1107/S0909049509036723

Henglein, 1979, J. Phys. Chem., 83, 2209, 10.1021/j100480a006

Hoszowska, 2004, J. Electron Spectrosc. Relat. Phenom., 137-140, 687, 10.1016/j.elspec.2004.02.005

Hugenbruch, 2016, Phys. Chem. Chem. Phys., 18, 10688, 10.1039/C5CP07293J

Hunt, 2015, J. Phys. Chem. C, 119, 13691, 10.1021/acs.jpcc.5b02922

Ingham, 2015, Crystallogr. Rev., 21, 229, 10.1080/0889311X.2015.1024114

Juhás, 2013, J. Appl. Cryst., 46, 560, 10.1107/S0021889813005190

Kern, 2014, Philos. Trans. Roy. Soc. B, 369, 20130590, 10.1098/rstb.2013.0590

Kotani, 2001, Rev. Mod. Phys., 73, 203, 10.1103/RevModPhys.73.203

Kowalska, 2016, Inorg. Chem., 55, 4485, 10.1021/acs.inorgchem.6b00295

Krause, 1979, J. Phys. Chem. Ref. Data, 8, 329, 10.1063/1.555595

Kumar, 2013, J. Mater. Chem. C, 1, 2448, 10.1039/c3tc00639e

Lambertz, 2014, Chem. Sci., 5, 1187, 10.1039/C3SC52703D

Lancaster, 2011, Inorg. Chem., 50, 6767, 10.1021/ic200822b

Lee, 2010, J. Am. Chem. Soc., 132, 9715, 10.1021/ja101281e

Lee, 1982, J. Phys. Chem., 86, 3391, 10.1021/j100214a025

Lima, 2016, J. Non-Cryst. Solids, 447, 21, 10.1016/j.jnoncrysol.2016.05.027

Lima, 2013, Phys. B, 424, 60, 10.1016/j.physb.2013.05.001

Loula, 2012, Phys. Rev. B, 85, 245128, 10.1103/PhysRevB.85.245128

Mattern, 2012, Rev. Sci. Instrum., 83, 023901, 10.1063/1.3680598

Meisel, A., Leonhardt, G. & Szargan, R. (1989). X-ray Spectra and Chemical Binding. Berlin: Springer.

Moreno, G., Bongers, R., Cardoso, M., O'Dowd, F. & Slepicka, H. (2015). Proceedings of the 15th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS2015), pp. 1119-1122. Melbourne, Australia.

Moreno, 2013, J. Phys. Conf. Ser., 425, 142003, 10.1088/1742-6596/425/14/142003

Nemoshkalenko, 1968, Phys. Status Solidi B, 30, 703, 10.1002/pssb.19680300230

Petkov, 2012, Charact. Mater. Chap. Pair Distrib. Functions Anal., 1361

Petkov, 2013, Phys. Chem. Chem. Phys., 15, 8544, 10.1039/c2cp43378h

Pollock, 2011, J. Am. Chem. Soc., 133, 5594, 10.1021/ja200560z

Pollock, 2015, Acc. Chem. Res., 48, 2967, 10.1021/acs.accounts.5b00309

Pollock, 2014, J. Am. Chem. Soc., 136, 9453, 10.1021/ja504182n

Rees, 2015, Angew. Chem. Int. Ed., 54, 13249, 10.1002/anie.201505930

Rietveld, 1969, J. Appl. Cryst., 2, 65, 10.1107/S0021889869006558

Rivas, 2001, Langmuir, 17, 574, 10.1021/la001038s

Rodella, C. (2015). Personal communication.

Rodrigues, 1998, J. Synchrotron Rad., 5, 1157, 10.1107/S0909049597018293

Rueff, 2013, J. Electron Spectrosc. Relat. Phenom., 188, 10, 10.1016/j.elspec.2013.04.014

Saccone, 2015, J. Appl. Phys., 118, 075903, 10.1063/1.4928856

Safonov, 2006, J. Phys. Chem. B, 110, 23192, 10.1021/jp064569j

Safonova, 2006, J. Phys. Chem. B, 110, 16162, 10.1021/jp063416t

Saleta, 2014, Acta Cryst. A, 70, C872, 10.1107/S205327331409127X

Sanchez del Rio, 2011, J. Synchrotron Rad., 18, 708, 10.1107/S0909049511026306

Schmitt, 2004, Nucl. Instrum. Methods Phys. Res. A, 518, 436, 10.1016/j.nima.2003.11.051

Schmitt, 2003, Nucl. Instrum. Methods Phys. Res. A, 501, 267, 10.1016/S0168-9002(02)02045-4

Souza-Neto, 2012, Phys. Rev. Lett., 109, 026403, 10.1103/PhysRevLett.109.026403

Swanson, 1953, US National Bureau of Standards Circular, 539, 1

Syassen, 2008, High. Press. Res., 28, 75, 10.1080/08957950802235640

Szlachetko, 2012, Rev. Sci. Instrum., 83, 103105, 10.1063/1.4756691

Tanaka, 1994, J. Phys. Soc. Jpn, 63, 2780, 10.1143/JPSJ.63.2780

Toby, 2001, J. Appl. Cryst., 34, 210, 10.1107/S0021889801002242