XAI for intrusion detection system: comparing explanations based on global and local scope
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hu, X., Li, T., Wu, Z., Gao, X., Wang, Z.: Research and application of intelligent intrusion detection system with accuracy analysis methodology. Infrared Phys. Technol. 88, 245–253 (2018)
Holzinger, A.: From machine learning to explainable AI. In: World symposium on digital intelligence for systems and machines (DISA), pp. 55–66 (2018)
National Academies of Sciences, Engineering, and Medicine et al.: Implications of artificial intelligence for cybersecurity. In: Proceedings of a Workshop. National Academies Press (2019)
Othman, S.M., Ba-Alwi, F.M., Alsohybe, N.T., Al-Hashida, A.Y.: Intrusion detection model using machine learning algorithm on big data environment. J. Big Data 5(1), 1–12 (2018)
Da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019)
Hodo, E. et al.: Threat analysis of IoT networks using artificial neural network intrusion detection system, pp. 1–6. IEEE (2016)
Peng, K., et al.: Intrusion detection system based on decision tree over big data in fog environment. Wirel. Commun. Mob. Comput. 2018 (2018)
Zhang, Z., Shen, H.: Application of online-training SVMs for real-time intrusion detection with different considerations. Comput. Commun. 28(12), 1428–1442 (2005)
Sharma, Y., Verma, A., Rao, K., Eluri, V.: Reasonable explainability for regulating AI in health. ORF occasional paper (261) (2020)
Rudin, C., Radin, J.: Why are we using black box models in ai when we don’t need to? A lesson from an explainable AI competition. Harvard Data Sci. Rev. 1(2) (2019)
Paulauskas, N., Auskalnis, J.: Analysis of data pre-processing influence on intrusion detection using NSL-KDD dataset. In: Open Conference of Electrical, Electronic and Information Sciences (eStream), pp. 1–5. IEEE (2017)
Datta, H., Deshmukh, T.G., Puja Padiya, Y.: International Conference on Communication, Information & Computing Technology (ICCICT). Improving classification using preprocessing and machine learning algorithms on NSL-KDD dataset
Lipton, Z.: The mythos of model interpretability. arXiv preprint arXiv:1606.03490 (2016)
Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD Explor. Newsl. 15(1), 1–10 (2014)
Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions, 4768–4777 (2017)
Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010)
Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier, 1135–1144 (2016)
Goode, K., Hofmann, H.: Visual diagnostics of an explainer model: tools for the assessment of lime explanations. Stat. Anal. Data Min. ASA Data Sci. J. 14(2), 185–200 (2021)
Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)
Zhao, Q., Hastie, T.: Causal interpretations of black-box models. J. Bus. Econ. Stat. 39(1), 272–281 (2021)
Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graph. Stat. 24(1), 44–65 (2015)
Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 82(4), 1059–1086 (2020)
Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of ai explainability techniques. arXiv preprint arXiv:1909.03012 (2019)
Maonan Wang, Y.Y., Kangfeng Zheng, W.X.: An explainable machine learning framework for intrusion detection systems. IEEE Access 8(2020), 73127–73141 (2020)
Kaggle dataset. https://www.kaggle.com/sampadab17/network-intrusion-detection
NSL-KDD data set for network-based intrusion detection systems. https://www.unb.ca/cic/datasets/nsl.html
https://pair-code.github.io/facets/
Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)
Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. 20(177), 1–81 (2019)
Anjomshoae, S., Främling, K., Najjar, A.: Explanations of Black–Box Model Predictions by Contextual Importance and Utility, pp. 95–109. Springer, New York (2019)
Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049 (2018)