X-ray imaging of a water bear offers a new look at tardigrade internal anatomy
Tóm tắt
Tardigrades (water bears) are microscopic invertebrates of which the anatomy has been well studied using traditional techniques, but a comprehensive three-dimensional reconstruction has never been performed. In order to close this gap, we employed X-ray computed tomography (CT), a technique that is becoming increasingly popular in zoology for producing high-resolution, three-dimensional (3D) scans of whole specimens. While CT has long been used to scan larger samples, its use in some microscopic animals can be problematic, as they are often too small for conventional CT yet too large for high-resolution, optics-based soft X-ray microscopy. This size gap continues to be narrowed with advancements in technology, with high-resolution imaging now being possible using both large synchrotron devices and, more recently, laboratory-based instruments. Here we use a recently developed prototype lab-based nano-computed tomography device to image a 152 μm-long tardigrade at high resolution (200–270 nm pixel size). The resulting dataset allowed us to visualize the anatomy of the tardigrade in 3D and analyze the spatial relationships of the internal structures. Segmentation of the major structures of the body enabled the direct measurement of their respective volumes. Furthermore, we segmented every storage cell individually and quantified their volume distribution. We compare our measurements to those from published studies in which other techniques were used. The data presented herein demonstrate the utility of CT imaging as a powerful supplementary tool for studies of tardigrade anatomy, especially for quantitative volume measurements. This nanoCT study represents the smallest complete animal ever imaged using CT, and offers new 3D insights into the spatial relationships of the internal organs of water bears.
Tài liệu tham khảo
Nelson DR, Guidetti R, Rebecchi L. Phylum Tardigrada. In: Thorp JH, Rogers C, editors. Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates. 4th ed. Cambridge: Academic Press; 2015. p. 347–80.
Guidetti R, Altiero T, Rebecchi L. On dormancy strategies in tardigrades. J Insect Physiol. 2011;57:567–76.
Müller M, Oliveira IS, Allner S, Ferstl S, Bidola P, Mechlem K, Fehringer A, Hehn L, Dierolf M, Achterhold K, et al. Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography. Proc Natl Acad Sci U S A. 2017;114(47):12378–83.
Mokso R, Cloetens P, Maire E, Ludwig W, Buffiere JY. Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics. Appl Phys Lett. 2007;90:144104.
Kalbfleisch S, Neubauer H, Krüger SP, Bartels M, Osterhoff M, Mai DD, Giewekemeyer K, Hartmann B, Sprung M, Salditt T. The Göttingen holography endstation of beamline P10 at PETRA III/DESY. AIP Conf Proc. 2011;1365:96–9.
Tkachuk A, Duewer FW, Cui H, Feser M, Wang S, Yun W. X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using cu rotating anode X-ray source. Z Kristallogr Cryst Mater. 2007;222:650–5.
Brusca RC, Brusca GJ. Invertebrates. 2nd ed. Sunderland: Sinauer Associates, Inc.; 2003.
Lorenzen S, Schmidt-Rhaesa A. Cycloneuralia. In: Westheide W, Rieger G, editors. Spezielle Zoologie Teil 1: Einzeller und wirbellose Tiere. 3rd ed. Berlin: Springer-Verlag Berlin Heidelberg; 2013. p. 426–53.
Olendrowitz C, Bartels M, Krenkel M, Beerlink A, Mokso R, Sprung M, Salditt T. Phase-contrast x-ray imaging and tomography of the nematode Caenorhabditis elegans. Phys Med Biol. 2012;57:5309–23.
Hrivňak S, Hovan A, Uličný J, Vagovči P. Phase retrieval for arbitrary Fresnel-like linear shift-invariant imaging systems suitable for tomography. Biomed Opt Express. 2018;9:4390–400.
van de Kamp T, Zuber M, Baumbach T, Greven H. Strengths and limitations of X-ray microtomography (μCT) of minute metazoans shown with Tardigrada. Entomologie heute. 2018;30:153–9.
Goldstein B. The emergence of the tardigrade Hypsibius exemplaris as a model system. Cold Spring Harb Protoc. 2018. https://doi.org/10.1101/pdb.emo102301.
Gross V, Treffkorn S, Mayer G. Tardigrada. In: Wanninger A, editor. Evolutionary developmental biology of invertebrates 3: Ecdysozoa I: non-tetraconata. Vienna: Springer Vienna; 2015. p. 35–52.
Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA, Nishimura EO, Tintori SC, Li Q, Jones CD, Yandell M, et al. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci U S A. 2015;112(52):15976–81.
Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci U S A. 2016;113(18):5053–8.
Fehringer A, Lasser T, Zanette I, Noël PB, Pfeiffer F. A versatile tomographic forward- and back-projection approach on multi-GPUs. SPIE Med Imaging. 2014;9034:90344F.
Sonakowska L, Włodarczyk A, Poprawa I, Binkowski M, Śróbka J, Kamińska K, Kszuk-Jendrysik M, Chajec Ł, Zajusz B, Rost-Roszkowska MM. Structure and ultrastructure of the endodermal region of the alimentary tract in the freshwater shrimp Neocaridina heteropoda (Crustacea, malacostraca). PLoS One. 2015;10:e0126900.
Cheng Z, Yoshizawa K. Functional morphology of Trichadenotecnum male and female genitalia analyzed using μCT (Insecta: Psocodea: Psocomorpha). J Morphol. 2019;280:1–13.
Jahn H, Oliveira IS, Gross V, Martin C, Hipp A, Mayer G, Hammel JU. Evaluation of contrasting techniques for X-ray imaging of velvet worms (Onychophora). J Microsc. 2018;270(3):343–58.
White DL, Mazurkiewicz JE, Barrnett RJ. A chemical mechanism for tissue staining by osmium tetroxide-ferrocyanide mixtures. J Histochem Cytochem. 1979;27(7):1084–91.
Seligman AM, Wasserkrug HL, Hanker JS. A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J Cell Biol. 1966;30(2):424–32.
Tilley S, Jacobson M, Cao Q, Brehler M, Sisniega A, Zbijewski W, Stayman JW. Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging. IEEE Trans Med Imag. 2017;37:988–99.
Richardson W. Bayesian-based iterative method of image restoration. J Opt Soc Am. 1972;62:55–9.
Greven H. Comments on the eyes of tardigrades. Arthropod Struct Dev. 2007;36(4):401–7.
Gąsiorek P, Stec D, Morek W, Michalczyk Ł. An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibiodea (Tardigrada: Eutardigrada). Zootaxa. 2018;4415(1):45–75.
Rost-Roszkowska MM, Poprawa I, Wójtowicz M, Kaczmarek Ł. Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis. Protoplasma. 2011;248:405–14.
Hyra M, Poprawa I, Włodarczyk A, Student S, Sonakowska L, Kszuk-Jendrysik M, Rost-Roszkowska MM. Ultrastructural changes in the midgut epithelium of Hypsibius dujardini (Doyère, 1840) (Tardigrada, Eutardigrada, Hypsibiidae) in relation to oogenesis. Zool J Linnean Soc. 2016;178:897–906.
Poprawa I, Hyra M, Rost-Roszkowska MM. Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae). Protoplasma. 2015;252:1019–29.
Martin C, Gross V, Hering L, Tepper B, Jahn H, Oliveira IS, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A. 2017;203(8):565–90.
Wigglesworth VB. The principles of insect physiology. 5th ed. Frome and London: Butler & Tanner Ltd.; 1953.
Rensch B. Histological changes correlated with evolutionary changes of body size. Evolution. 1948;2:218–30.
Polilov AA. Anatomy of the smallest Coleoptera, featherwing beetles of the tribe Nanosellini (Coleoptera, Ptiliidae), and limits of insect miniaturization. Entomol Rev. 2008;88:26–33.
Beutel RG, Pohl H, Hünefeld F. Strepsipteran brains and effects of miniaturization (Insecta). Arthropod Struct Dev. 2005;34:301–13.
Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM. Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada). J Morphol. 2014;275(2):173–90.
Mayer G, Harzsch S. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol. 2007;7:118.
Brenneis G, Scholtz G, Beltz BS. Comparison of ventral organ development across Pycnogonida (Arthropoda, Chelicerata) provides evidence for a plesiomorphic mode of late neurogenesis in sea spiders and myriapods. BMC Evol Biol. 2018;1:47.
Elson RC. Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-leg nerves and possible homologies with insects. J Comp Neurol. 1996;365:1–17.
Deutsch JS. Segments and parasegments in arthropods: a functional perspective. BioEssays. 2004;26:1117–25.
Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson P, Poprawa I, Hohberg K, Schill RO, Pflüger H-J, Schlegel M. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol Biol. 2013;13(1):230.
Reuner A, Hengherr S, Brümmer F, Schill RO. Comparative studies on storage cells in tardigrades during starvation and anhydrobiosis. Curr Zool. 2010;56(2):259–63.
Hyra M, Rost-Roszkowska MM, Student S, Włodarczyk A, Deperas M, Janelt K, Poprawa I. Body cavity cells of Parachela during their active life. Zool J Linnean Soc. 2016;178:878–87.
Szymańska B. Interdependence between storage bodies and egg developmental stages in Macrobiotus richtersi Murray, 1911 (Tardigrada). Acta Biol Cracov Ser Zool. 1994;36:41–50.
Poprawa I. Ultrastructural changes of the storage cells during oogenesis in Dactylobiotus dispar (Murray, 1907) (Tardigrada: Eutardigrada). Zool Polon. 2006;51:13–8.
Volkmann A, Greven H. Ultrastructural localization of tyrosinase in the tardigrade cuticle. Tissue Cell. 1993;25(3):435–8.
Czerneková M, Jönsson KI. Mitosis in storage cells of the eutardigrade Richtersius coronifer. Zool J Linnean Soc. 2016;178:888–96.
Jönsson KI, Rebecchi L. Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival. J Exp Zool. 2002;293:578–84.
Czerneková M, Janelt K, Student S, Jönsson KI, Poprawa I. A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress. PLoS One. 2018;13:e0201430.
Gusnard D, Kirschner RH. Cell and organelle shrinkage during preparation for scanning electron microscopy: effects of fixation, dehydration and critical point drying. J Microsc. 1977;11:51–7.
Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM. Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade Panarthropoda. J Morphol. 2012;273(11):1227–45.
Wiederhöft H, Greven H. The cerebral ganglia of Milnesium tardigradum Doyère (Apochela, Tardigrada): three dimensional reconstruction and notes on their ultrastructure. Zool J Linnean Soc. 1996;116:71–84.
Kraft P, Bergamaschi A, Broennimann C, Dinapoli R, Eikenberry EF, Graafsma H, Henrich B, Johnson I, Kobas M, Mozzanica A, et al. Characterization and calibration of PILATUS detectors. IEEE Trans Nucl Sci. 2009;56(3):758–64.
Hehn L, Morgan K, Bidola P, Noichl W, Gradl R, Dierolf M, Noël PB, Pfeiffer F. Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography. APL Bioeng. 2018;2:016105.
Huber PJ. Robust estimation of a location parameter. Ann Math Stat. 1964;35(1):73–101.
Nocedal J. Updating quasi-Newton matrices with limited storage. Math Comput. 1980;35:773–82.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Meth. 2012;9(7):676–82.