X-ray Computed Microtomography Characterization of Ti6Al4V/CoCrMo Biomedical Composite Fabricated by Semi-solid Sintering
Tóm tắt
The semi-solid sintering of a novel Ti6Al4V/CoCrMo biomedical composite was investigated for the first time by semi-in situ X-ray computed microtomography. Composite was fabricated by dry mixing 15 vol% CoCrMo reinforcing particles with Ti6Al4V particles as matrix. The mixture was poured into a 1 mm diameter quartz capillary. 3D images of the same sample were acquired before and after sintering at different temperatures between 1050 and 1130 °C. Qualitative and quantitative analysis of the 3D images was carried out to observe the evolution of the microstructure. Formation and evolution with temperature of eutectic phase were monitored. It was found that the eutectic reaction started between Ti6Al4V and CoCrMo particles at 1050 °C, first in the contact area and then the liquid of eutectic phase was distributed over the surface of Ti6Al4V particles and filled the interparticle pores. Size and sphericity of Ti6Al4V and CoCrMo particles diminished as the volume fraction of eutectic phase increased. After sintering at 1130 °C most of CoCrMo particles disappeared because they react with Ti6Al4V to form the Ti2Co phase. Porosity is reduced 15% mainly by reducing the smaller pores that can be filled by the eutectic phase. Thus, it was concluded that semi-in situ X-ray computed microtomography is an effective tool to investigate the semi-solid state sintering and to analyze the microstructure evolution and densification mechanisms.
Tài liệu tham khảo
Bender, S., Chalivendra, V., Rahbar, N., El Wakil, S.: Mechanical characterization and modeling of graded porous stainless steel specimens for possible bone implant applications. Int. J. Eng. Sci. 53, 67–73 (2012). https://doi.org/10.1016/j.ijengsci.2012.01.004
Dourandish, M., Godlinski, D., Simchi, A., Firouzdor, V.: Sintering of biocompatible P/M Co–Cr–Mo alloy (F-75) for fabrication of porosity-graded composite structures. Mater. Sci. Eng. A 472(1–2), 338–346 (2008). https://doi.org/10.1016/j.msea.2007.03.043
Niinomi, M., Boehlert, C.J.: Titanium alloys for biomedical applications. In: Advances in Metallic Biomaterials, pp. 179–213. Springer, Berlin (2015)
Mutlu, I.: Synthesis and characterization of Ti–Co alloy foam for biomedical applications. Trans. Nonferrous Met. Soc. China 26(1), 126–137 (2016). https://doi.org/10.1016/S1003-6326(15)64028-6
Wang, R., Welsch, G.: Evaluation of an experimental Ti-Co alloy for dental restorations. J. Biomed. Mater. Res. B 101(8), 1419–1427 (2013). https://doi.org/10.1002/jbm.b.32961
Murray, J.L.: The Co−Ti (cobalt−titanium) system. J. Phase Equil. 3(1), 74–86 (1982)
Yang, C., Kang, L.M., Li, X.X., Zhang, W.W., Zhang, D.T., Fu, Z.Q., Li, Y.Y., Zhang, L.C., Lavernia, E.J.: Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering. Acta Mater. 132, 491–502 (2017). https://doi.org/10.1016/j.actamat.2017.04.062
Kang, L.M., Yang, C., Wang, F., Li, X.X., Zhu, D.Z., Zhang, W.W., Chen, W.P., Huan, Y.: Designing ultrafine lamellar eutectic structure in bimodal titanium alloys by semi-solid sintering. J. Alloys Compd. 702, 51–59 (2017). https://doi.org/10.1016/j.jallcom.2017.01.257
Baruchel, J., Bleuet, P., Bravin, A., Coan, P., Lima, E., Madsen, A., Ludwig, W., Pernot, P., Susini, J.: Advances in synchrotron hard X-ray based imaging. C. R. Phys. 9(5–6), 624–641 (2008). https://doi.org/10.1016/j.crhy.2007.08.003
Olmos, L., Takahashi, T., Bouvard, D., Martin, C.L., Salvo, L., Bellet, D., Di Michiel, M.: Analysing the sintering of heterogeneous powder structures by in situ microtomography. Philos. Mag. 89(32), 2949–2965 (2009). https://doi.org/10.1080/14786430903150225
Bernard, D., Guillon, O., Combaret, N., Plougonven, E.: Constrained sintering of glass films: microstructure evolution assessed through synchrotron computed microtomography. Acta Mater. 59(16), 6228–6238 (2011). https://doi.org/10.1016/j.actamat.2011.06.022
Olmos, L., Bouvard, D., Salvo, L., Bellet, D., Di Michiel, M.: Characterization of the swelling during sintering of uniaxially pressed copper powders by in situ X-ray microtomography. J. Mater. Sci. 49(12), 4225–4235 (2014). https://doi.org/10.1007/s10853-014-8117-3
Vagnon, A., Rivière, J.P., Missiaen, J.M., Bellet, D., Di Michiel, M., Josserond, C., Bouvard, D.: 3D statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography. Acta Mater. 56(5), 1084–1093 (2008). https://doi.org/10.1016/j.actamat.2007.11.008
Shuai, S., Guo, E., Phillion, A.B., Callaghan, M.D., Jing, T., Lee, P.D.: Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of MgSn alloys. Acta Mater. 118, 260–269 (2016). https://doi.org/10.1016/j.actamat.2016.07.047
Nogita, K., Yasuda, H., Prasad, A., McDonald, S.D., Nagira, T., Nakatsuka, N., Uesugi, K., St John, D.H.: Real time synchrotron X-ray observations of solidification in hypoeutectic Al–Si alloys. Mater. Charact. 85, 134–140 (2013). https://doi.org/10.1016/j.matchar.2013.08.015
Limodin, N., Salvo, L., Suéry, M., DiMichiel, M.: In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al–15.8 wt% Cu alloy. Acta Mater. 55(9), 3177–3191 (2007). https://doi.org/10.1016/j.actamat.2007.01.027
Terzi, S., Salvo, L., Suery, M., Dahle, A., Boller, E.: In situ microtomography investigation of microstructural evolution in Al–Cu alloys during holding in semi-solid state. Trans. Nonferr. Metal. Soc. China 20, s734–s738 (2010). https://doi.org/10.1016/S1003-6326(10)60572-9
Cabezas-Villa, J.L., Olmos, L., Bouvard, D., Lemus-Ruiz, J., Jiménez, O.: Processing and properties of highly porous Ti6Al4V mimicking human bones. J. Mater. Res. 33(6), 650–661 (2018). https://doi.org/10.1557/jmr.2018.35
Zhou, H., Zhou, M., Cheng, M., Guo, W., Cen, K.: Experimental study and X-ray microtomography based CFD simulation for the characterization of pressure drop in sinter bed. Appl. Therm. Eng. 112, 811–819 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.123
Renghini, C., Giuliani, A., Mazzoni, S., Brun, F., Larsson, E., Baino, F., Vitale-Brovarone, C.: Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J. Eur. Ceram. Soc. 33(9), 1553–1565 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.10.016
Klein, S., Weber, S., Theisen, W.: Investigation of heat transfer in a copper-infiltrated tool steel based on measurement, microtomography, and numerical simulation. Mater. Des. 156, 42–51 (2018). https://doi.org/10.1016/j.matdes.2018.06.028
Kaya, A.C., Zaslansky, P., Ipekoglu, M., Fleck, C.: Strain hardening reduces energy absorption efficiency of austenitic stainless steel foams while porosity does not. Mater. Des. 143, 297–308 (2018). https://doi.org/10.1016/j.matdes.2018.02.009
Farias, I., Olmos, L., Jimenez, O., Vergara-Hernández, H.J., Bouvard, D., Gárnica, P., Flores, M.: Analyzing the compressive behavior of porous Ti6Al4V by X-ray microtomography. Mater. Res-Ibero-AM J. 20(6), 1511–1517 (2017). https://doi.org/10.1590/1980-5373-mr-2017-0510
Olmos, L., Bouvard, D., Cabezas-Villa, J.L., Lemus-Ruiz, J., Jiménez, O., Arteaga, D.: Analysis of compression and permeability behavior of porous Ti6Al4V by computed microtomography. Met. Mater. Int. 25(3), 669–682 (2019). https://doi.org/10.1007/s12540-018-00223-w
Mihalcea, E., Hernández, H.V., Olmos, L., Jimenez, O.: Semi-solid sintering of Ti6Al4V/CoCrMo composites for biomedical applications. Mater. Res-Ibero-AM J. 22(2), e20180391 (2019). https://doi.org/10.1590/1980-5373-mr-2018-0391
Van Grieken, R., Markowicz, A. (eds.): Handbook of X-ray Spectrometry. CRC Press (2001)
Okuma, G., Kadowaki, D., Shinoda, Y., Akatsu, T., Guillon, O., Wakai, F.: Determination of the size of representative volume element for viscous sintering. J. Ceram. Soc. Jpn. 124(4), 421–425 (2016). https://doi.org/10.2109/jcersj2.15275
Lin, C.L., Miller, J.D.: 3D characterization and analysis of particle shape using X-ray microtomography (XMT). Powder Tech. 154(1), 61–69 (2005). https://doi.org/10.1016/j.powtec.2005.04.031
Olmos, L., Martin, C.L., Bouvard, D., Bellet, D., Di Michiel, M.: Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element simulation. J. Am. Ceram. Soc. 92(7), 1492–1499 (2009). https://doi.org/10.1111/j.1551-2916.2009.03037.x
Marmottant, A., Salvo, L., Martin, C.L., Mortensen, A.: Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J. Eur. Ceram. Soc. 28(13), 2441–2449 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.03.041
Olmos, L., Chaix, J.M., Nadler, S., Bonnefoy, O., Gelet, J.L., Thomas, G.: Study by X-ray microtomography of the horizontal vibration effects on sand densification. Granul. Matter. 18(3), 61 (2016). https://doi.org/10.1007/s10035-016-0661-x
Saltykov, S.A.: Stereometrische Metallographie Metallurgizdat. VEB, Leipzig (1974)
Yan, Z., Martin, C.L., Guillon, O., Bouvard, D.: Effect of size and homogeneity of rigid inclusions on the sintering of composites. Scr. Mater. 69(4), 327–330 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.013
Kingery, W.D., Narasimhan, M.D.: Densification during sintering in the presence of a liquid phase II. Experimental. J Appl. Phys 30(3), 307–310 (1959). https://doi.org/10.1063/1.1735156