Xác định hàm thế năng của mô hình vỏ-lõi cho vật liệu sắt điện PbTiO3 và ứng dụng trong tính toán độ phân cực
Tóm tắt
Từ khóa
#PbTiO3 #Core-shell model #Ferroelectric polarization #Effect of temperature #Effect of mechanical strainTài liệu tham khảo
J.F. Scott, C. A. Paz de Araujo, Ferroelectric
memories, Science 246(4936) (1989) 1400-1405,
http://doi.org/10.1126/science.246.4936.1400.
L.E. Cross, Ferroelectric Materials for
Electromechanical Transducer Applications. Jpn. J.
Appl. Phys, 34 (Part 1, No. 5B) (1995) 2525–2532,
http://doi.org/10.1143/JJAP.34.2525.
S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo & X. Geng,
Advantages and challenges of relaxor-PbTiO3
ferroelectric crystals for electroacoustic transducers–
A review, Prog. Mater. Sci. 68 (2015) 1–66,
http://doi/org/10.1016/j.pmatsci.2014.10.002.
P.P. Khirade, S.D. Birajdar, A.V. Raut & K.M.
Jadhav, Multiferroic iron doped BaTiO3
nanoceramics synthesized by sol-gel auto
combustion: Influence of iron on physical properties,
Ceram. Int. (2016) 1-11,
http://doi.org/10.1016/j.ceramint.2016.05.021.
M.A. Morales, R. Clay, C. Pierleoni, D.M. Ceperley,
First-principle methods: A perspective from quantum
Monte Carlo, Entropy. 16(1) (2013) 287–321,
http://doi.org/10.3390/e16010287.
S. Tinte et al, Atomistic modelling of BaTiO3 based
on first-principles calculations, J.Phys. Condens.
Matter. 11 (1999) 9679-9690,
http://doi.org/10.1088/0953-8984/11/48/325.
R.E. Cohen, Origin of ferroelectricity in perovskite
oxides, Nature 358(6382) (1992) 136–138,
http://doi: 10.1038/358136a0.
B. Meyer, J. Padilla, & D. Vanderbilt, Theory of
PbTiO3, BaTiO3, and SrTiO3 surfaces, Faraday
Discussions 114 (1999) 395–405,
https://doi.org/10.1039/A903029H.
C. Bungaro & K.M. Rabe, Coexistence of
antiferrodistortive and ferroelectric distortions at the
PbTiO3 (001) surface, Phys. Rev. B 71(3) (2005)
(9),
http://doi.org/10.1103/PhysRevB.71.035420.
H.J. Mang & H.A. Weidenmuller, Shell-Model
theory of the Nucleus, Annu. Rev. Nucl. Sci.18(1)
(1968) 1–26,
http://doi.org/10.1146/annurev.ns.18.120168.000245.
B.G. Dick & A.W. Overhauser, Theory of the
Dielectric Constants of Alkali Halide Crystals, Phys.
Rev. 112(1) (1958) 90–103,
http://doi/org/ 10.1103/PhysRev.112.90.
P. Giannozzi et al, Quantum espresso: a modular and
open-source software project for quantum
simulations of materials, J.Phys. Condens. Matter
(9) (2009) 395502,
http://doi.org/10.1088/0953-8984/21/39/395502.
D. M. Ceperley and B. J. Alder, Ground State of the
Electron Gas by a Stochastic Method, Phys. Rev.
Lett. 45(7) (1980) 566–569,
http://doi.org// 10.1103/PhysRevLett.45.566.
J.P. Perdew & A. Zunger, Self-interaction correction
to density-functional approximations for manyelectron systems, Phys. Rev. B 23(10) (1981) 5048–
,
http://doi.org/10.1103/PhysRevB.23.5048.
D. Vanderbilt, Soft self-consistent pseudopotentials
in a generalized eigenvalue formalism, Phys. Rev. B
(1990) 7892-7895,
http://doi.org/10.1103/PhysRevB.41.7892.
H.J. Monkhorst and J.D. Pack, Special points for
Brillouin-zone integrations, Phys. Rev. B 13 (1976)
-5192,
http://doi.org/10.1103/PhysRevB.13.5188.
T. Kitamura, Y. Umeno, F. Shang, T. Shimada, and
K. Wakahara, “Development of Interatomic Potential
for Pb(Zr,Ti)O3 Based on Shell model,” J. Solid
Mech. Mater. Eng., vol. 1, no. 12 (2007) 1423–1431,
http://doi.org/10.1299/jmmp.1.1423.
J.D. Gale, A.L. Rohl, The General Utility Lattice
Program (GULP), Mol. Simul, Vol. 29, No. 5 (2003)
-341,
http://doi.org/10.1080/0892702031000104887.
M. Sepliarsky and R.E. Cohen, First-principles based
atomistic modeling of phase stability in PMN–xPT, J.
Phys. Condens. Matter. 23(43) (2011) 435902,
http://doi.org/10.1088/0953-8984/23/43/435902.
T. Kitamura, Y. Umeno, F. Shang, T. Shimada, and
K. Wakahara, Development of Interatomic Potential
for Pb(Zr,Ti)O3 Based on Shell model, J. Solid Mech.
Mater. Eng., vol. 1, no. 12 (2007) 1423–1431,
http://doi.org/10.1299/jmmp.1.1423.
H.N. Lee, S.M. Nakhmanson, M.F. Chisholm, H.M.
Christen, K.M. Rabe & D. Vanderbilt, Suppressed
Dependence of Polarization on Epitaxial Strain in
Highly Polar Ferroelectrics, Phys. Rev. Lett. 98
(2007) 217602,
http://doi.org/10.1103/PhysRevLett.98.217602.
M. Sepliarsky and R.E. Cohen, Development of a
Shell Model Potential for Molecular Dynamics for
PbTiO3 by Fitting First Principles Results, Am. Inst.
Phvsics, Vol. 36 (2002) 36-44,
http://doi.org/10.1063/1.1499550.
R.K. Behera, Effect of surfaces, domain walls and
grain boundaries on ferroelectricity in lead titanate
using atomic scale simulations, University of florida,
,
O. Gindele, A. Kimmel, M.G. Cain & D. Duffy,
Shell Model force field for Lead Zirconate Titanate
Pb(Zr1–xTix)O3, J. Phys. Chem. C 119(31) (2015)
–17789,
http://doi.org/10.1021/acs.jpcc.5b03207.
V.G. Bhide, K.G. Deshmukh & M.S. Hegde,
Ferroelectric properties of PbTiO3, Physica 28(9)
(1962) 871–876,
http://doi/org/10.1016/0031-8914(62)90075-7.
R. Herchig, C.-M. Chang, B. K. Mani & I.
Ponomareva, Electrocaloric effect in ferroelectric
nanowires from atomistic simulations, Sci. Rep 5
(2015) 1-6,
http://doi.org/10.1038/srep17294.
