Wrinkling Behavior of Highly Stretched Rectangular Elastic Films via Parametric Global Bifurcation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antman, S.S., Pierce, J.F.: The intricate global structure of buckled states of compressible columns. SIAM J. Appl. Math. 50, 95–419 (1990)
Berger, M.S.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)
Cerda, E., Ravi-Chandar, K., Mahadevan, L.: Wrinkling of an elastic sheet under tension. Nature 419, 579–580 (2002)
Chen, Y.-C., Healey, T.J.: Bifurcation to pear-shaped equilibria of pressurized spherical membranes. Int. J. Non-Linear Mech. 26, 279–291 (1991)
Ciarlet, P.G.: Mathematical Elasticity, vol. I. North-Holland, Amsterdam (1988)
Ciarlet, P.G.: An introduction to differential geometry with applications to elasticity. J. Elast. 78–79, 3–201 (2005)
Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, New York (2008)
Dym, C.L., Shames, I.H.: Solid Mechanics: A Variational Approach. McGraw-Hill, New York (1973)
Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95, 227–252 (1986)
Friedl, N., Rammerstorfer, F.G., Fischer, F.D.: Buckling of stretched strips. Comput. Struct. 78, 185–190 (2000)
Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Springer, New York (1985)
Healey, T.J., Miller, U.: Two-phase equilibria in the anti-plane shear of an elastic solid with interfacial effects via global bifurcation. Proc. R. Soc. A, Math. Phys. Eng. Sci. 463, 1117–1134 (2007)
Healey, T.J., Simpson, H.S.: Global continuation in nonlinear elasticity. Arch. Ration. Mech. Anal. 143, 1–28 (1998)
Hetényi, M.: Beams on Elastic Foundation. University Michigan Press, Ann Arbor (1946)
Jacques, N., Potier-Ferry, M.: On mode localization in tensile plate buckling. C. R., Méc. 333, 804–809 (2005)
Keller, H.B.: Numerical Methods in Bifurcation Problems. Tata Institute of Fundamental Research/Springer, Bombay/New York (1987)
Le Dret, H., Raoult, A.: Quasiconvex envelopes of stored energy densities that are convex with respect to the strain tensor. In: Calculus of Variations, Applications and Computations. Pitman Research Notes in Mathematics, vol. 326, pp. 138–146 (1995)
Meirovitch, L.: Analytical Methods in Vibrations. Macmillan, New York (1967)
Nayyar, V., Ravi-Chandar, K., Huang, R.: Stretch-induced stress patterns and wrinkles in hyperelastic thin sheets. Int. J. Solids Struct. 48, 3471–3483 (2011)
Puntel, E., Deseri, L., Fried, E.: Wrinkling of a stretched thin sheet. J. Elast. 105, 137–170 (2011)
Raoult, A.: Non-polyconvexity of the stored energy function of a Saint Venant–Kirchhoff material. Apl. Mat. 31, 417–419 (1986)
Reddy, J.N.: Nonlinear Finite Element Analysis. Oxford University Press, New York (2004)
Steigmann, D.J.: Koiter’s shell theory from the perspective of three-dimensional elasticity. J. Elast. 111, 91–107 (2013)
Von Kármán, T., Edson, L.: The Wind and Beyond. Little, Brown and Company, Boston (1967)