Worldwide meta-analysis on Anaplasma phagocytophilum infections in animal reservoirs: Prevalence, distribution and reservoir diversity
Tài liệu tham khảo
Afonso, 2018, Molecular detection of Anaplasma phagocytophilum DNA in the lesser horseshoe bat (Rhinolophus hipposideros) guano, Epidemiol. Infect., 146, 1253, 10.1017/S0950268818001279
Andersson, 2017, Co-infection with Babesia divergens and Anaplasma phagocytophilum in cattle (Bos taurus), Sweden, Tick Tick-borne Dis., 8, 933, 10.1016/j.ttbdis.2017.08.005
Bahrami, 2018, First molecular detection of Anaplasma phagocytophilum in dromedaries (Camelus dromedarius), J. Zoo Wildl. Med., 49, 844, 10.1638/2017-0165.1
Barbour, 1993, The biological and social phenomenon of Lyme disease, Sci., 260, 1610, 10.1126/science.8503006
Battisti, 2019, Survey on tick-borne pathogens in ticks removed from humans in northwestern Italy, Vet. Parasitol. Reg. Stud. Rep., 18
Blaňarová, 2014, Distinct Anaplasma phagocytophilum genotypes associated with Ixodes trianguliceps ticks and rodents in Central Europe, Tick Tick Borne Dis., 5
Bouchard, 2019, Increased risk of tick-borne diseases with climate and environmental changes, Can. Commun. Dis. Rep., 45, 83, 10.14745/ccdr.v45i04a02
Bown, 2009, Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles, Emerg. Infect. Dis., 15, 1948, 10.3201/eid1512.090178
Bown, 2011, The common shrew (Sorex araneus): a neglected host of tick-borne infections?, Vect. Borne Zoon. Dis., 11, 947, 10.1089/vbz.2010.0185
Burkot, 2001, Use of a sentinel host system to study the questing behavior of Ixodes spinipalpis and its role in the transmission of Borrelia bissettii, human granulocytic ehrlichiosis, and Babesia microti, Am. J. Trop. Med. Hyg., 65, 293, 10.4269/ajtmh.2001.65.293
Cézanne, 2017, Molecular analysis of Anaplasma phagocytophilum and Babesia divergens in red deer (Cervus elaphus) in Western Austria, Mol. Cell. Probes, 31, 55, 10.1016/j.mcp.2016.07.003
Chastagner, 2016, Prevalence of Anaplasma phagocytophilum in small rodents in France, Tick Tick Borne Dis., 7, 988, 10.1016/j.ttbdis.2016.05.005
Chen, 1994, Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease, J. Clin. Microbiol., 32, 589, 10.1128/jcm.32.3.589-595.1994
Clark, 2012, Anaplasma phagocytophilum in small mammals and ticks in Northeast Florida, J. Vect. Ecol., 37, 262, 10.1111/j.1948-7134.2012.00226.x
Daszak, 2001, Anthropogenic environmental change and the emergence of infectious diseases in wildlife, Acta Trop., 78, 103, 10.1016/S0001-706X(00)00179-0
De La Fuente, 2005, Potential vertebrate reservoir hosts and invertebrate vectors of Anaplasma marginale and A. phagocytophilum in Central Spain, Vect. Borne Zoon. Dis., 5, 390, 10.1089/vbz.2005.5.390
Di Domenico, 2016, Detection of Anaplasma phagocytophilum genotypes that are potentially virulent for human in wild ruminants and Ixodes ricinus in Central Italy, Tick Tick Borne Dis., 7, 782, 10.1016/j.ttbdis.2016.03.012
Dong, 2013, Detection of A. phagocytophilum and E. chaffeensis in patient and mouse blood and ticks by a duplex real-time PCR assay, PLoS One, 8
Dugan, 2005, Detection of Ehrlichia spp. in raccoons (Procyon lotor) from Georgia, Vect. Borne Zoon. Dis., 5, 162, 10.1089/vbz.2005.5.162
Dugat, 2016, Multiple-locus variable-number tandem repeat analysis potentially reveals the existence of two groups of Anaplasma phagocytophilum circulating in cattle in France with different wild reservoirs, Parasit. Vectors, 9, 596, 10.1186/s13071-016-1888-4
Dumler, 2001, Int. J. Syst. Evol. Microbiol., 51, 2145, 10.1099/00207713-51-6-2145
Ebani, 2016, Molecular survey on the presence of zoonotic arthropod-borne pathogens in wild red deer (Cervus elaphus), Comparat. Immunol. Microbiol. Infec. Dis., 47, 77, 10.1016/j.cimid.2016.06.003
Egger, 1997, Bias in meta-analysis detected by a simple, graphical test, Br. Med. J., 315, 629, 10.1136/bmj.315.7109.629
Filipović, 2018, Molecular and serological prevalence of Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeenses, E. ewingii, Borrelia burgdorferi, Babesia canis, B. gibsoni and B. vogeli among clinically healthy outdoor dogs in Serbia, Vet. Parasitol. Reg. Stud. Rep., 14, 117
Foggie, 1951, Studies on the infectious agent of tick-borne fever in sheep, J. Pathol. Bacteriol., 63, 1, 10.1002/path.1700630103
Foley, 2011, The ecology of tick-transmitted infections in the redwood chipmunk (Tamias ochrogenys), Tick Tick-Borne Dis., 2, 88, 10.1016/j.ttbdis.2010.11.003
Foley, 2008, Differential exposure to Anaplasma phagocytophilum in rodent species in northern California, Vect. Borne Zoon. Dis., 8, 49, 10.1089/vbz.2007.0175
Foley, 2011, Nidicolous ticks of small mammals in Anaplasma phagocytophilum-enzootic sites in northern California, Tick Tick Borne Dis., 2, 75, 10.1016/j.ttbdis.2011.03.003
Foley, 2016, Diversity of rickettsial pathogens in Columbian black-tailed deer and their associated kids (Diptera: Hippoboscidae) and ticks (Acari: Ixodidae), J. Vect. Ecol., 41, 41, 10.1111/jvec.12192
Gabriel, 2009, Ecology of Anaplasma phagocytophilum infection in gray foxes (Urocyon cinereoargenteus) in northwestern California, J. Wildl. Dis., 45, 344, 10.7589/0090-3558-45.2.344
Gaito, 2014, Comparative analysis of the infectivity rate of both Borrelia burgdorferi and Anaplasma phagocytophilum in humans and dogs in a New Jersey community, Infec. Drug Res., 7, 199, 10.2147/IDR.S68742
Gao, 2009, Meta-analysis: prevalence of HIV infection and syphilis among MSM in China, Sex. Transm. Infect., 85, 354, 10.1136/sti.2008.034702
Graf, 2008, Prevalence of seropositivity to spotted fever group rickettsiae and Anaplasma phagocytophilum in a large, demographically diverse US sample, Clin. Infect. Dis., 46, 70, 10.1086/524018
Granquist, 2010, A morphological and molecular study of Anaplasma phagocytophilum transmission events at the time of Ixodes ricinus tick bite, Acta Vet. Scand., 52, 43, 10.1186/1751-0147-52-43
Gussmann, 2014, Anaplasma phagocytophilum infection in a horse from Switzerland with severe neurological symptoms, Schweiz. Arch. Für Tierheilkd., 156, 345, 10.1024/0036-7281/a000605
Hansmann, 2019, Value of PCR, serology, and blood smears for human granulocytic anaplasmosis diagnosis, France, Emerg. Infect. Dis., 25, 996, 10.3201/eid2505.171751
Hartelt, 2008, Spread of ticks and tick-borne diseases in Germany due to global warming, Parasitol. Res., 103, S109, 10.1007/s00436-008-1059-4
Härtwig, 2014, Detection of Anaplasma phagocytophilum in red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) from Brandenburg, Germany, Tick Tick Borne Dis., 5, 277, 10.1016/j.ttbdis.2013.11.001
Hedges, 1998, Fixed- and random-effects models in meta-analysis, Psychol. Methods, 13, 486, 10.1037/1082-989X.3.4.486
Higgins, 2003, Measuring inconsistency in meta-analyses, Br. Med. J., 327, 557, 10.1136/bmj.327.7414.557
Hing, 2018, Prevalence of Anaplasma phagocytophilum in humans in Belgium for the period 2013–2016, Acta Clin. Belg., 74, 280, 10.1080/17843286.2018.1491928
Hofmeester, 2016, Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle, Environ. Res. Lett., 11, 10.1088/1748-9326/11/4/043001
Jahfari, 2014, Circulation of four Anaplasma phagocytophilum ecotypes in Europe, Parasit. Vectors, 7, 365, 10.1186/1756-3305-7-365
Johnson, 2020, An outbreak of bovine babesiosis in February, 2019, triggered by above average winter temperatures in southern England and co-infection with Babesia divergens and Anaplasma phagocytophilum, Parasit. Vectors, 13, 305, 10.1186/s13071-020-04174-3
Kallio, 2014, First report of Anaplasma phagocytophilum and Babesia microti in rodents in Finland, Vect. Borne Zoon. Dis., 14, 389, 10.1089/vbz.2013.1383
Kang, 2011, New genetic variants of Anaplasma phagocytophilum and Anaplasma bovis from Korean water deer (Hydropotes inermis argyropus), Vect. Borne Zoon. Dis., 11, 929, 10.1089/vbz.2010.0214
Karshima, 2021, Animal reservoirs of zoonotic Babesia species: a global systematic review and meta-analysis of their prevalence, distribution and species diversity, Vet. Parasitol., 298, 10.1016/j.vetpar.2021.109539
Karshima, 2022, Global status of Anaplasma phagocytophilum infections in human population: results of a 50-year (1970–2020) meta-analysis, J. Vector Borne Dis., 10.4103/0972-9062.364756
Karshima, 2022, Anaplasma phagocytophilum infection rates in questing and host-attached ticks: a global systematic review and meta-analysis, Acta Trop., 228, 10.1016/j.actatropica.2021.106299
Kauffmann, 2017, Anaplasma phagocytophilum and Babesia spp. in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany, Mol. Cell. Probes, 31, 46, 10.1016/j.mcp.2016.08.008
Keesing, 2012, Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum, Emerg. Infect. Dis., 18, 2013, 10.3201/eid1812.120919
Koh, 2018, Molecular investigation of Anaplasma spp. in domestic and wildlife animals in peninsular Malaysia, Vet. Parasitol. Reg. Stud. Rep., 13, 141
Laus, 2013, Prevalence of tick borne pathogens in horses from Italy, J. Vet. Med. Sci., 75, 715, 10.1292/jvms.12-0449
Lebert, 2020, Distribution of ticks, tick-borne pathogens and the associated local environmental factors including small mammals and livestock, in two French agricultural sites: the OSCAR database, Biodiv. Data J., 8, 10.3897/BDJ.8.e50123
Lee, 2016, First molecular detection and phylogenetic analysis of Anaplasma phagocytophilum in shelter dogs in Seoul, Korea. Tick Tick Borne Dis., 7, 945, 10.1016/j.ttbdis.2016.04.011
Lejal, 2019, Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus, Parasit. Vectors, 12, 152, 10.1186/s13071-019-3418-7
Magnarelli, 2006, Antibodies to whole-cell or recombinant antigens of Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti in white-footed mice, J. Wildl. Dis., 42, 732, 10.7589/0090-3558-42.4.732
Magnarelli, 2010, Seasonal prevalence of serum antibodies to whole cell and recombinant antigens of Borrelia burgdorferi and Anaplasma phagocytophilum in white-tailed deer in Connecticut, J. Wildl. Dis., 46, 781, 10.7589/0090-3558-46.3.781
Magnarelli, 2013, Serum antibodies to Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti in recaptured white-footed mice, J. Wildl. Dis., 49, 294, 10.7589/2012-06-172
Magnarelli, 2013, Serum antibodies to Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti in recaptured white-footed mice, J. Wildl. Dis., 49, 294, 10.7589/2012-06-172
Majláthová, 2011, Polymerase chain reaction confirmation of Babesia canis canis and Anaplasma phagocytophilum in dogs suspected of babesiosis in Slovakia, Vect. Borne Zoon. Dis., 11, 1447, 10.1089/vbz.2010.0276
Malmsten, 2014, Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces), Epidemiol. Infect., 142, 1205, 10.1017/S0950268813002094
Malmsten, 2019, Vector-borne zoonotic pathogens in Eurasian moose (Alces alces alces), Vect. Borne Zoon. Dis., 19, 207, 10.1089/vbz.2018.2277
Masuzawa, 2011, Detection of Anaplasma phagocytophilum from wild boars and deer in Japan, Jap. J. Infec. Dis., 64, 333, 10.7883/yoken.64.333
Masuzawa, 2014, Detection of Anaplasma phagocytophilum and Anaplasma bovis in small wild mammals from Taichung and Kinmen Island, Taiwan, Jap. J. Infec. Dis., 67, 111, 10.7883/yoken.67.111
Matei, 2017, Altitude-dependent prevalence of canine granulocytic anaplasmosis in Romania, Vect. Borne Zoon. Dis., 17, 147, 10.1089/vbz.2016.1998
Matei, 2018, New records for Anaplasma phagocytophilum infection in small mammal species, Parasit. Vectors, 11, 193, 10.1186/s13071-018-2791-y
M’ghirbi, 2012, Anaplasma phagocytophilum in horses and ticks in Tunisia, Parasit. Vectors, 5, 180, 10.1186/1756-3305-5-180
M'ghirbi, 2016, Anaplasma marginale and A. phagocytophilum in cattle in Tunisia, Parasit. Vectors, 9, 556, 10.1186/s13071-016-1840-7
Michalik, 2012, Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum variants, Emerg. Infect. Dis., 18, 998, 10.3201/eid1806.110997
Michalski, 2006, Anaplasma phagocytophilum in central and western Wisconsin: a molecular survey, Parasitol. Res., 99, 694, 10.1007/s00436-006-0217-9
Munn, 2015, Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data, Intern. J. Evi. Based Healthc., 13, 147, 10.1097/XEB.0000000000000054
Murase, 2011, Molecular detection of Anaplasma phagocytophilum in cattle and Ixodes persulcatus ticks, Vet. Microbiol., 149, 504, 10.1016/j.vetmic.2010.11.025
Nieto, 2008, Evaluation of squirrels (Rodentia: Sciuridae) as ecologically significant hosts for Anaplasma phagocytophilum in California, J. Med. Entomol., 45, 763, 10.1093/jmedent/45.4.763
Nieto, 2009, Reptile infection with Anaplasma phagocytophilum, the causative agent of granulocytic anaplasmosis, J. Parasitol., 95, 1165, 10.1645/GE-1983.1
Obiegala, 2017, The enzootic life-cycle of Borrelia burgdorferi (sensu lato) and tick-borne rickettsiae: an epidemiological study on wild-living small mammals and their ticks from Saxony, Germany, Parasit. Vectors, 10, 115, 10.1186/s13071-017-2053-4
Page, 2021, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372
Pancholi, 1995, Ixodes dammini as a potential vector of human granulocytic ehrlichiosis, J. Infect. Dis., 172, 1007, 10.1093/infdis/172.4.1007
Pantchev, 2015, Current surveys of the seroprevalence of Borrelia burgdorferi, Ehrlichia canis, Anaplasma phagocytophilum, Leishmania infantum, Babesia canis, Angiostrongylus vasorum and Dirofilaria immitis in dogs in Bulgaria, Parasitol. Res., 114, 117, 10.1007/s00436-015-4518-8
Phuentshok, 2018, Survey and phylogenetic analysis of rodents and important rodent-borne zoonotic pathogens in Gedu, Bhutan, Korean J. Parasitol., 56, 521, 10.3347/kjp.2018.56.5.521
Praskova, 2011, Seroprevalence of Anaplasma phagocytophilum in horses in the Czech Republic, Tick Tick Borne Dis., 2, 111, 10.1016/j.ttbdis.2011.01.002
Pūraitė, 2015, Anaplasma phagocytophilum infection in moose (Alces alces) in Norway, Microbes Infect., 17, 823, 10.1016/j.micinf.2015.09.013
Rainwater, 2006, Serosurveillance for Anaplasma phagocytophilum antibodies in white-tailed deer (Odocoileus virginianus) in Iowa, USA, Vect. Borne Zoon. Dis., 6, 275, 10.1089/vbz.2006.6.275
Rar, 2014, Genetic variability of Anaplasma phagocytophilum in ticks and voles from Ixodes persulcatus/Ixodes trianguliceps sympatric areas from Western Siberia, Russia, Tick Tick Borne Dis., 5, 854, 10.1016/j.ttbdis.2014.07.008
Razanske, 2019, Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in southern Norway, Intern. J. Parasitol: Parasit. Wildl., 8, 127
Rejmanek, 2011, Temporal patterns of tick-borne granulocytic anaplasmosis in California, Tick Tick Borne Dis., 2, 81, 10.1016/j.ttbdis.2010.12.003
Remesar, 2020, Prevalence and molecular characterization of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) from Spain, Tick Tick Borne Dis., 11
Rosso, 2017, Prevalence and genetic variability of Anaplasma phagocytophilum in wild rodents from the Italian alps, Parasit. Vectors, 10, 293, 10.1186/s13071-017-2221-6
Royle, 2003, Literature searching for clinical and cost-effectiveness studies used in health technology assessment reports carried out for the National Institute for clinical excellence appraisal system, Health Technol. Assess., 7, 1, 10.3310/hta7340
Saleem, 2018, First molecular evidence of equine granulocytic anaplasmosis in Pakistan, Acta Trop., 180, 18, 10.1016/j.actatropica.2017.12.032
Santos, 2011, Detection of Anaplasma phagocytophilum in Brazilian dogs by real-time polymerase chain reaction, J. Vet. Diagn. Investig., 23, 770, 10.1177/1040638711406974
Savidge, 2016, Anaplasma phagocytophilum infection of domestic cats: 16 cases from the northeastern USA, J. Feline Med. Surg., 18, 85, 10.1177/1098612X15571148
Scharf, 2011, Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters, J. Clin. Microbiol., 49, 790, 10.1128/JCM.02051-10
Seo, 2018, Molecular detection and phylogenetic analysis of Anaplasma phagocytophilum in horses in Korea, Kor. J. Parasitol., 56, 559, 10.3347/kjp.2018.56.6.559
Seo, 2018, Molecular detection of Anaplasma phagocytophilum-like Anaplasma spp. and pathogenic a. phagocytophilum in cattle from South Korea, Mol. Phylogenet. Evol., 126, 23, 10.1016/j.ympev.2018.04.012
Seo, 2019, Molecular detection and phylogenetic analysis of canine tick-borne pathogens from Korea, Tick Tick Borne Dis., 11
Shin, 2020, Identification of zoonotic tick-borne pathogens from Korean water deer (Hydropotes inermis argyropus), Vect. Borne Zoon. Dis., 20, 745, 10.1089/vbz.2019.2609
Silaghi, 2011, Isolation, propagation and preliminary characterisation of Anaplasma phagocytophilum from roe deer (Capreolus capreolus) in the tick cell line IDE8, Tick Tick Borne Dis., 2, 204, 10.1016/j.ttbdis.2011.09.002
Silaghi, 2012, The European hedgehog (Erinaceus europaeus)--a suitable reservoir for variants of Anaplasma phagocytophilum?, Tick Tick Borne Dis., 3, 49, 10.1016/j.ttbdis.2011.11.005
Silaghi, 2014, Molecular investigation for bacterial and protozoan tick-borne pathogens in wild boars (Sus scrofa) from southern Germany, Vect. Borne Zoon. Dis., 14, 371, 10.1089/vbz.2013.1495
Silveira, 2015, The first clinical and laboratory evidence of co-infection by Anaplasma phagocytophilum and Ehrlichia canis in a Brazilian dog, Ticks Tick Borne Dis., 6, 242, 10.1016/j.ttbdis.2015.01.003
Smith, 2009, Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology, FEMS Microbiol. Ecol., 67, 6, 10.1111/j.1574-6941.2008.00629.x
Sonenshine, 2018, Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease, Int. J. Environ. Res. Public Health, 15, 478, 10.3390/ijerph15030478
Stafford, 1999, Infection with agents of human granulocytic ehrlichiosis, Lyme disease, and babesiosis in wild white-footed mice (Peromyscus leucopus) in Connecticut, J. Clin. Microbiol., 37, 2887, 10.1128/JCM.37.9.2887-2892.1999
Stannard, 1969, Equine ehrlichiosis: a disease with similarities to tick-borne fever and bovine petechial fever, Vet. Rec., 84, 10.1136/vr.84.6.149
Stuen, 2013, Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies, Front. Cell. Infect. Microbiol., 3, 10.3389/fcimb.2013.00031
Sukara, 2018, Golden jackals (Canis aureus) as hosts for ticks and tick-borne pathogens in Serbia, Tick Tick Borne Dis., 9, 1090, 10.1016/j.ttbdis.2018.04.003
Sutton, 2009, Publication bias, 435
Svitálková, 2015, Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia, Parasit. Vectors, 8, 276, 10.1186/s13071-015-0880-8
Szewczyk, 2019, Molecular detection of Anaplasma phagocytophilum in wild carnivores in North-Eastern Poland, Parasit. Vectors, 12, 465, 10.1186/s13071-019-3734-y
Teodorowski, 2020, Molecular detection of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) in eastern Poland, Ann. Agric. Env. Med., 27, 702, 10.26444/aaem/124902
Tsachev, 2018, Serological evidence of Borrelia burgdorferi, Anaplasma phagocytophilum and Ehrlichia spp. infections in horses from southeastern Bulgaria, Vect. Borne Zoon. Dis., 18, 588, 10.1089/vbz.2018.2293
Tsachev, 2019, Seroprevalence of Anaplasma phagocytophilum, Ehrlichia spp. and Borrelia burgdorferi infections in horses: first report from northern Bulgaria - short communication, Acta Vet. Hung., 67, 197, 10.1556/004.2019.021
Tsai, 2019, Human granulocytic anaplasmosis in Kinmen, an offshore island of Taiwan, PLoS Negl. Trop. Dis., 13, 10.1371/journal.pntd.0007728
Vargas-Hernandez, 2016, Molecular detection of Anaplasma species in dogs in Colombia, Rev. Bras. Parasitol. Vet., 25, 459, 10.1590/s1984-29612016066
Víchová, 2014, Anaplasma infections in ticks and reservoir host from Slovakia, Infect. Genet. Evol., 22, 265, 10.1016/j.meegid.2013.06.003
Wang, 2017, A loop-mediated isothermal amplification assay targeting 16S rRNA gene for rapid detection of Anaplasma phagocytophilum infection in sheep and goats, J. Parasitol., 103, 187, 10.1645/16-158
Welc-Falęciak, 2013, Co-infection and genetic diversity of tick-borne pathogens in roe deer from Poland, Vect. Borne Zoon. Dis., 13, 277, 10.1089/vbz.2012.1136
Werden, 2015, Prevalence of Anaplasma phagocytophilum and Babesia microti in Ixodes scapularis from a newly established Lyme disease endemic area, the Thousand Islands region of Ontario, Canada, Vect. Borne Zoon. Dis., 15, 627, 10.1089/vbz.2015.1792
Woldehiwet, 2006, Anaplasma phagocytophilum in ruminants in Europe, Ann. N. Y. Acad. Sci., 1078, 446, 10.1196/annals.1374.084
Woldehiwet, 2010, The natural history of Anaplasma phagocytophilum, Vet. Parasitol., 167, 108, 10.1016/j.vetpar.2009.09.013
Xu, 2016, Passive surveillance of Ixodes scapularis (say), their biting activity, and associated pathogens in Massachusetts, Vect. Borne Zoon. Dis., 16, 520, 10.1089/vbz.2015.1912
Yabsley, 2006, Detection of Babesia and Anaplasma species in rabbits from Texas and Georgia, USA, Vect. Borne Zoon. Dis., 6, 7, 10.1089/vbz.2006.6.7
Yang, 2017, Molecular detection of Anaplasma phagocytophilum in wild cervids and hares in China, J. Wildl. Dis., 53, 420, 10.7589/2016-09-215
Zele, 2012, Evidence of Anaplasma phagocytophilum in game animals from Slovenia, Acta Vet. Hung., 60, 441, 10.1556/avet.2012.038
Zhao, 2019, Rapid and sensitive detection of Anaplasma phagocytophilum using a newly developed recombinase polymerase amplification assay, Exp. Parasitol., 201, 21, 10.1016/j.exppara.2019.04.010
Zheng, 2018, First molecular evidence of Anaplasma phagocytophilum in rodent populations of Nanchang, China, Jap. J. Infec. Dis., 71, 129, 10.7883/yoken.JJID.2017.301
Zolnik, 2015, American black bears as hosts of blacklegged ticks (Acari: Ixodidae) in the northeastern United States, J. Med. Entomol., 52, 1103, 10.1093/jme/tjv092
