Tái sử dụng chất thải gỗ để tổng hợp biosorbent lignocellulosic: đặc trưng và ứng dụng cho việc loại bỏ đồng (II), Reactive Blue 19 và cyprodinil đồng thời từ nước

Wood Science and Technology - Tập 53 - Trang 619-647 - 2019
Nena Velinov1, Jelena Mitrović1, Miloš Kostić1, Miljana Radović1, Milica Petrović1, Danijela Bojić1, Aleksandar Bojić1
1Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia

Tóm tắt

Một loại biosorbent lai lignocellulosic-Al2O3 mới (LC-Al2O3) đã được tổng hợp từ vật liệu chất thải gỗ từ cây sồi (Quercus robur). Biosorbent này đã được thử nghiệm để loại bỏ đồng thời ba loại chất ô nhiễm khác nhau: cation (ion đồng (II)), anion (thuốc nhuộm dệt Reactive Blue 19) và không phân cực (thuốc diệt nấm cyprodinil) trong dung dịch mô hình đa thành phần và nước tự nhiên. Việc đặc trưng biosorbent được thực hiện bằng phổ hồng ngoại biến đổi Fourier, kính hiển vi điện tử quét với phổ năng lượng X-ray (SEM-EDX) và phân tích nhiễu xạ X-ray. Để xác định các thông số tối ưu cho quá trình loại bỏ đồng thời tất cả ba chất ô nhiễm, các ảnh hưởng của pH, nhiệt độ, liều lượng sorbent, nồng độ chất ô nhiễm và điều kiện thủy động lực học đối với quá trình hấp thụ đã được nghiên cứu. Quá trình hấp thụ chất ô nhiễm vào LC-Al2O3 phụ thuộc cao vào pH và pH tối ưu là 5, với hiệu suất loại bỏ gần 98% cho cả ba chất ô nhiễm. Động lực học hấp thụ tuân theo mô hình bậc hai giả, khuếch tán trong hạt và mô hình Chrastil, cho thấy cả phản ứng trên bề mặt và khuếch tán đều là bước giới hạn tốc độ. Kết quả thí nghiệp cân bằng phù hợp tốt nhất với mô hình isotherm hấp thụ Langmuir. Sức hấp thụ tối đa của biosorbent cho việc loại bỏ đồng thời các chất ô nhiễm trong hệ đa thành phần là 15.69 mg g−1 cho đồng (II), 29.99 mg g−1 cho Reactive Blue 19 và 20.97 mg g−1 cho cyprodinil. Nghiên cứu hiện tại cho thấy việc sử dụng vật liệu chất thải gỗ để sản xuất một loại sorbent giá rẻ có thể giảm chất thải gỗ và tăng cường các tùy chọn tái sử dụng/tái chế, đồng thời cũng giảm hiệu quả ô nhiễm nước bằng cách loại bỏ đồng thời ion kim loại nặng, thuốc nhuộm dệt và thuốc trừ sâu khỏi dung dịch mô hình nước và nước sông ô nhiễm.

Từ khóa

#biosorbent lignocellulosic #tái sử dụng chất thải gỗ #đồng (II) #thuốc nhuộm Reactive Blue 19 #cyprodinil #xử lý nước

Tài liệu tham khảo

Abdolali A, Ngo HH, Guo W, Zhou JL, Du B, Wei Q, Wang XC, Nguyen PD (2015) Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies. Bioresour Technol 193:477–487 Akbari M, Hallajisani A, Keshtkar AR, Shahbeig H, Ghorbanian SA (2015) Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. J Environ Chem Eng 3:140–149 Aksu Z, Akpınar D (2000) Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge. Sep Purif Technol 21(1–2):87–99 Albadarin AB, Solomon S, Kurniawan TA, Mangwandi C, Walker G (2017) Single, simultaneous and consecutive biosorption of Cr(VI) and Orange II onto chemically modified masau stones. J Environ Manag 204:365–374 Albert Q, Leleyter L, Lemoine M, Heutte N, Rioult J-P, Sage L, Baraud F, Garon D (2018) Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere 196:386–392 Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) Novel metal-organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Interfaces 9:36026–36037 Alqadami AA, Naushad M, Alothman ZA, Ahamad T (2018) Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism. J Environ Manage 223:29–36 Amirnia S, Ray MB, Margaritis A (2016) Copper ion removal by Acer saccharum leaves in a regenerable continuous-flow column. Chem Eng J 287:755–764 Anandkumar J, Mandal B (2011) Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: kinetic, mechanistic and thermodynamic studies. J Hazard Mater 186:1088–1096 Araghi SH, Entezari MH (2015) Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution. Appl Surf Sci 333:68–77 Ayoob S, Gupta AK, Bhakat PB, Bhat VT (2007) Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chem Eng J 140:6–14 Bektaş N, Aydın S, Öncel MS (2011) The adsorption of arsenic ions using beidellite, zeolite, and sepiolite clays: a study of kinetic, equilibrium and thermodynamics. Sep Sci Technol 46:1005–1016 Berrazoum A, Marouf R, Ouadjenia F, Schott J (2015) Bioadsorption of a reactive dye from aqueous solution by municipal solid waste. Biotechnol Rep 7:44–50 Bozbas SK, Boz Y (2016) Low-cost biosorbent: anadara inaequivalvis shells for removal of Pb(II) and Cu(II) from aqueous solution. Process Saf Environ Prot 103:144–152 Chaudhuri H, Dash S, Ghorai S, Pal S, Sarkar A (2016) SBA-16: application for the removal of neutral, cationic, and anionic dyes from aqueous medium. J Environ Chem Eng 4:157–166 Chrastil J (1990) Adsorption of direct dyes on cotton: kinetics of dyeing from finite baths based on new information. Text Res J 60:413–416 Daneshvar E, Vazirzadeh A, Niazi A, Kousha M, Naushad M, Bhatnagar A (2017) Desorption of methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. J Clean Prod 152:443–453 Deng JH, Zhang XR, Zeng GM, Gong JL, Niu QY, Liang J (2013) Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200 El-Sakhawy M (2001) Characterization of modified oxycellulose. J Therm Anal Cal 63:549–558 Entezari MH, Soltani T (2008) Simultaneous removal of copper and lead ions from a binary solution by sono-sorption process. J Hazard Mater 160:88–93 Freundlich HZ (1906) Over the adsorption in solution. J Phys Chem 57A:385–470 Ho YS, McKay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76:183–191 Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742 Huang L, Zhou Y, Guo X, Chen Z (2015) Simultaneous removal of 2,4-dichlorophenol and Pb(II) from aqueous solution using organoclays: isotherm, kinetics and mechanism. J Ind Eng Chem 22:280–287 Huang L, He M, Chen B, Hu B (2018) Magnetic Zr–MOFs nanocomposites for rapid removal of heavymetal ions and dyes fromwater. Chemosphere 199:435–444 Isah AU, Abdulraheem G, Bala S, Muhammad S, Abdullahi M (2015) Kinetics, equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon. Int Biodeterior Biodegrad 102:265–273 Javadian H, Angaji MT, Naushad M (2014) Synthesis and characterization of polyaniline/γ-alumina nanocomposite: a comparative study for the adsorption of three different anionic dyes. J Ind Eng Chem 20:3890–3900 Jin X, Zha S, Li S, Chen Z (2014) Simultaneous removal of mixed contaminants by organoclays—amoxicillin and Cu(II) from aqueous solution. Appl Clay Sci 102:196–201 Jin X, Zheng M, Sarkar B, Naidu R, Chen Z (2016) Characterization of bentonite modified with humic acid for the removal of Cu (II) and 2,4-dichlorophenol from aqueous solution. Appl Clay Sci 134:89–94 Kallel F, Bouaziz F, Chaari F, Belghith L, Ghorbel R, Chaabouni SE (2016) Interactive effect of garlic straw on the sorption and desorption of Direct Red 80 from aqueous solution. Process Saf Environ Prot 102:30–43 Kumar PM, Balasubramanian C, Sali ND, Bhoraskar SV, Rohatgi VK, Badrinarayanan S (1999) Nanophase alumina synthesis in thermal arc plasma and characterization: correlation to gas-phase studies. Mater Sci Eng, B 63:215–227 Kyzas GZ, Lazaridis NK, Kostoglou M (2013) On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan. J Colloid Interface Sci 407:432–441 Lagergren S (1898) Zur Theorie der sogenannten Adsorption gelöster Stoffe (About the theory of so-called adsorption of soluble substances). Kungliga Svenska Vetenskapsakademiens Handl 24:1–39 Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403 Lazar T (2005) Color chemistry: synthesis, properties, and applications of organic dyes and pigments. Wiley Online Library, New York Leodopoulos C, Doulia D, Gimouhopoulos K, Triantis TM (2012) Single and simultaneous adsorption of methyl orange and humic acid onto bentonite. App Clay Sci 70:84–90 Li K, Li P, Cai J, Xiao S, Yang H, Li A (2016) Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere 154:310–318 Liu Y (2006) Some consideration on the Langmuir isotherm equation. Colloid Surface A 274:34–36 Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985 Liu Y, Liu K, Zhang L, Zhang Z (2015) Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles. Water Sci Technol 72:1243–1249 Ma L, Chen Q, Zhu J, Xi Y, He H, Zhu R, Tao Q, Ayoko GA (2016a) Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chem Eng J 283:880–888 Ma L, Zhu J, Xi Y, Zhu R, He H, Liang X, Ayoko GA (2016b) Adsorption of phenol, phosphate and Cd(II) by inorganic–organic montmorillonites: a comparative study of single and multiple solute. Colloids Surf A 497:63–71 Naushad M, Abdullah ALOthman Z, Rabiul Awual M, Alfadul SM, Ahamad T (2015) Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies. Desalin Water Treat 57:13527–13533 Naushad M, Ahamad T, Al-Maswari BM, Alqadami AA, Alshehri SM (2017) Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J 330:1351–1360 Oyanedel-Craver VA, Fuller M, Smith JA (2007) Simultaneous sorption of benzene and heavy metals onto two organoclays. J Colloid Interface Sci 309(2):485–492 Pettersen RC (1984) The chemistry of solid wood. Advances in chemistry. Chapter 2: the chemical composition of wood. American Chemical Society, Washington, DC Pionke HB, Glotfelty DW (1990) Contamination of groundwater by atrazine and selected metabolites. Chemosphere 21:813–822 Roonasi P, Nezhad AY (2016) A comparative study of a series of ferrite nanoparticles as heterogeneous catalysts for phenol removal at neutral pH. Mater Chem Phys 172:143–149 Santos SCR, Boaventura RAR (2016) Adsorption of cationic and anionic azo dyes on sepiolite clay: equilibrium and kinetic studies in batch mode. J Environ Chem Eng 4:1473–1483 Shakib F, Koohi AD, Pirzaman AK (2017) Adsorption of methylene blue by using novel chitosan-g-itaconic acid/bentonite nanocompositeequilibrium and kinetic study. Water Sci Technol 75:1932–1943 Shi Z, Xu C, Guan H, Li L, Fan L, Wang Y, Liu L, Meng Q, Zhang R (2018) Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf. A Physicochem. Eng. Asp. 539:382–390 Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495 Sun Y-X, Li X-R, Zhao Y-Y, Li C-Y, Ren Z-L (2014) Simultaneous sorption of Cd2+ and phenol to CTMAB-CA modified bentonite from aqueous solutions. Adv Appl Sci Res 5:155–158 Tang WW, Zeng GM, Gong JL, Liu Y, Wang XY, Liu YY, Liu ZF, Chen L, Zhang XR, Tu DZ (2012) Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem Eng J 211:470–478 Todorciuc T, Bulgariu L, Popa IV (2015) Adsorption of Cu(II) from aqueous solution on wheat straw lignin: equilibrium and kinetic studies. Cell Chem Technol 49:439–447 Tural B, Ertaş E, Enez B, Fincan SA, Tural S (2017) Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. J Environ Chem Eng 5:4795–4802 Vaquero-Fernández L, Sáenz-Hernáez A, Sanz-Asensio J, Fernández-Zurbano P, Sainz-Ramírez M, Pons-Jubera B, López-Alonso M, Epifanio-Fernández S-I, Martínez-Soria M-T (2008) Determination of cyprodinil and fludioxonil in the fermentative process of must by high-performance liquid chromatography-diode array detection. J Sci Food Agric 88:1943–1948 Vázquez-Guerrero A, Alfaro-Cuevas-Villanueva R, Rutiaga-Quiñones JG, Cortés-Martínez R (2016) Fluoride removal by aluminum-modified pine sawdust: effect of competitive ions. Ecol Eng 94:365–379 Wang W, Tian G, Zhang Z, Wang A (2015) A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of methylene blue and Cu(II) ions. Chem Eng J 265:228–238 Weber WJ Jr, Morris JC (1964) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60 Wibowo E, Rokhmat M, Sutisna Khairurrijal K, Abdullah M (2017) Reduction of seawater salinity by natural zeolite (Clinoptilolite): adsorption isotherms, thermodynamics and kinetics. Desalination 409:146–156