Wolfe Type Higher Order Multiple Objective Nondifferentiable Symmetric Dual Programming with Generalized Invex Function
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal, R.P., Ahmad, I., Gupta, S.K.: A note on higher-order nondifferentiable symmetric duality in multiobjective programming. Appl. Math. Lett. 24, 1308–1311 (2011)
Ahmad, I.: Unified higher order duality in nondifferentiable multiobjective programming involving cones. Math. Comput. Model. 55(3–4), 419–425 (2012)
Ahmad, I., Agarwal, R.P., Jayswal, A.: Higher order duality in nondifferentiable fractional programming involving generalized convexity. J. Comput. Anal. Appl. 15(8), 1444–1455 (2013)
Ahmad, I., Husain, Z.: Second order symmetric duality in multiobjective programming involving cones. Optim. Lett. 7(6), 1353–1365 (2013)
Ahmad, I., Husain, Z., Sharma, S.: Higher order duality in nondifferentiable multiobjective programming. Numer. Funct. Anal. Optim. 28, 989–1002 (2007)
Balas, E.: Minimax and duality for linear and nonlinear mixed integer programming. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 385–417. Management Science Research Group, Carnegie-Mellon University, Amsterdam, North Holland (1970)
Batatoresu, A., Preda, V., Beldiman, M.: Higher-order symmetric multiobjective duality involving generalized (F, ρ $\rho $ , γ $\gamma $ , b)-convexity. Revue Romaine de Mathematique Pures et Appliqués 52(6), 619–630 (2007)
Bazarra, M.S., Goode, J.J.: On symmetric duality in nonlinear programming. Oper. Res. 21(1), 1–9 (1973)
Carsiti, G., Ferrara, M., Stefanescu, A.: Mathematical programming with ( Φ $\Phi $ , ρ ) $\rho )$ -invexity. In: Konnov, I.V., Luc, D.I., Rubinov, A. (eds.) Generalized Convexity and Related Topics, Lecture Notes in Economics and Mathematical System, vol. 583, pp 167–176. Springer (2006)
Chen, X.: Higher order symmetric duality in nondifferentiable multiobjective programming problem. J. Math. Anal. Appl. 290, 423–435 (2004)
Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007)
Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L.: Pareto Optimality, Game Theory and Equilibria, Springer Optimization and its Application, vol. 17, pp. 517–528 (2008)
Chinchuluun, A., Yuan, D., Pardalos, P.M.: Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity. Ann. Oper. Res. 154, 2133–147 (2007)
Craven, B.D.: Invex function and constrained local minima. Bull. Aust. Math. Soc. 24, 357–366 (1981)
Dantzig, G.B., Eisenberg, E., Cottle, R.W.: Symmetric dual nonlinear programs. Pac. J. Math. 15, 809–812 (1965)
Devi, G.: Symmetric duality for nonlinear programming problem involving η $\eta $ -bonvex function. Eur. J. Oper. Res. 104, 615–621 (1998)
Dorn, W.S.: A symmetric dual theorem for quadratic program. J. Oper. Res. Soc. Jpn. 2, 93–97 (1960)
Gulati, T.R., Ahmad, I.: Second order symmetric duality for minimax mixed integer programs. Eur. J. Oper. Res. 101, 122–129 (1997)
Gulati, T.R., Gupta, S.K.: Wolfe type second order symmetric duality in nondifferentiable programming. J. Math. Anal. Appl. 310, 247–253 (2005)
Gulati, T.R., Gupta, S.K.: Higher order nondifferentiable symmetric duality with generalized F- convexity. J. Math. Anal. Appl. 329, 229–237 (2007)
Gupta, S.K., Kailey, N., Kumar, S.: Duality for nondifferentiable multiobjective higher order symmetric programs over cones involving generalized (F, α $\alpha $ , ρ $\rho $ , d) convexity. J. Inequal. Appl. 2012, 298 (2012). doi: 10.1186/1029-242X-2012-298
Hanson, M.A., Mond, B.: Further generalization of convexity in mathematical programming. J. Inf. Optim. Sci. 3(1), 25–32 (1982)
Husain, I., Goyal, A., Masoodi, M.: On nondifferentiable multiobjective second order symmetric duality. Int. J. Oper. Res. 5(2), 91–98 (2008)
Liang, Z.A., Huang, H.X., Pardalos, P.M.: Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory Appl. 110, 611–619 (2001)
Mangasarian, O.L.: Second order and higher order duality in nonlinear programming. J. Math. Anal. Appl. 51, 607–620 (1975)
Mishra, S.K.: Nondifferentiable higher order symmetric duality in mathematical programming with generalized invexity. Eur. J. Oper. Res. 167, 28–34 (2005)
Mishra, S.K., Rueda, N.G.: Higher order generalized invexity and duality in mathematical programming. J. Math. Anal. Appl. 247, 173–182 (2000)
Mishra, S.K., Rueda, N.G.: Higher order generalized invexity and duality in nondifferentiable mathematical programming. J. Math. Anal. Appl. 272, 496–506 (2002)
Mond, B., Schecther, M.: Nondifferentiable symmetric duality. Bull. Aust. Math. Soc. 53, 177–188 (1996)
Mond, B., Weir, T.: Generalized convexity and duality. In: Schaible, S., Ziemba, W.T. (eds) Generalized Convexity in Optimization and Economics, pp. 263–280. Academic, New York (1981)
Mond, B., Zhang, J.: Higher order invexity and duality in mathematical programming. In: Crouzeix, J.P., et al. (eds.) Generalized Convexity, Generalized Monotoncity, Recent Results, pp. 357–372. Kuwer Academic, Dordrecht (1998)
Preda, V.: On efficiency and duality for multiobjective programs. J. Math. Anal. Appl. 166(2), 365–377 (1992)
Weir, T., Mond, B.: Symmetric and self duality in multiobjective programming. Asia-Pacific. J. Oper. Res. 5, 75–87 (1991)
Yang, X.M., Teo, K.L., Yand, X.Q.: Higher order generalized convexity and duality in nondifferentiable multiobjective mathematical programming. J. Math. Anal. Appl. 297(1), 48–55 (2004)
Yuan, D., Pardalos, P.M., Liu, X., Chinchuluun, A.: Nondifferentiable minimax fractional programming problem with (C, α $\alpha $ , ρ $\rho $ , d)-convexity. J. Optim. Theory Appl. 129(1), 185–199 (2006)