Wold-type decomposition for bi-regular operators

Springer Science and Business Media LLC - Tập 87 - Trang 463-483 - 2021
H. Ezzahraoui1, M. Mbekhta2, E. H. Zerouali1
1Center of Mathematical research in Rabat (CeReMaR), Mohammed V University. Faculty of Sciences., Rabat, Morocco
2Université de Lille département de Mathématiques, UMR-CNRS 8524, Villeneuve d’Ascq, France

Tóm tắt

We show in this paper that a Wold-type decomposition holds for the class of regular operators with regular Moore–Penrose inverse. We also give several examples and investigate various properties of such class of operators.

Tài liệu tham khảo

Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses. Theory and applications, Second edition, Canadian Mathematical Society, Springer-Verlag, New York, 2003. A. Aleman, S. Richter and C. Sundberg, Beurling’s theorem for the Bergman space, Acta Math., 177 (1996), 275–310. C. Badea and M. Mbekhta, Operators similar to partial isometries, Acta Sci. Math. (Szeged), 71 (2005), 663–680. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239–255. S. R. Caradus, Mapping properties of relatively regular operators, Proc. Amer. Math. Soc., 47 (1975), 409–412. S. Chavan, On operators Cauchy dual to 2-hyperexpansive operators, Proc. Edinburgh Math. Soc., 50 (2007), 637–552. N.C. Dincic and D. S. Djordjevic, Basic reverse order law and its equivalencies, Aequationes Math., 85 (2013), 505–517. H. Ezzahraoui, M. Mbekhta and E.H. Zerouali, On the Cauchy dual of closed range operators, Acta Sci. Math. (Szeged), 85 (2019), 231–248. H. Ezzahraoui, M. Mbekhta and E. H. Zerouali, Wold-type decomposition for some regular operators, J. Math. Anal. Appl., 430 (2015), 483–499. J. Guyker, A structure theorem for operators with closed range, Bull. Austral. Math. Soc., 18 (1978), 169–186. S.H. Kulkarni and G. Ramesh, Absolutely minimum attaining closed operators, J. Anal., 29 (2021), 473–492. M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J., 29 (1987), 159–175. M. Mbekhta, Partial isometries and generalized inverses, Acta Sci. Math. (Szeged), 70 (2004), 767–781. M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory, 21 (1989), 69–105. A. Olofsson, Wandering subspace theorems, Integral Equations Operator Theory, 51 (2005), 395–409. M. Rosenblum and J. Rovnyak, Hardy vlasses and operator theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1985. P. Saphar, Contribution à l’étude des applications linéaires dans un espace de Banach, Bull. Soc. Math., 92 (1964), 363–384. S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math., 531 (2001), 147–189. D. J. Sutton, Structure of Invariant Subspaces for Left-Invertible Operators on Hilbert Space, Ph.D. thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, August 12, 2010.