Wntless in Wnt secretion: molecular, cellular and genetic aspects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 125(3): 509–522
Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 125(3): 523–533
Belenkaya T Y, Wu Y, Tang X, Zhou B, Cheng L, Sharma Y V, Yan D, Selva E M, Lin X (2008). The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell, 14(1): 120–131
Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch D H, McMahon A P, Sommer L, Boussadia O, Kemler R (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Devel-opment, 128(8): 1253–1264
Carlton J, Bujny M, Peter B J, Oorschot V M, Rutherford A, Mellor H, Klumperman J, McMahon H T, Cullen P J (2004). Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol, 14(20): 1791–1800
Carlton J G, Bujny M V, Peter B J, Oorschot V M, Rutherford A, Arkell R S, Klumperman J, McMahon H T, Cullen P J (2005). Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci, 118(19): 4527–4539
Carpenter A C, Rao S, Wells J M, Campbell K, Lang R A (2010). Generation of mice with a conditional null allele for Wntless. Genesis, 48(9): 554–558
Ching W, Hang H C, Nusse R (2008). Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem, 283(25): 17092–17098
Coombs G S, Yu J, Canning C A, Veltri C A, Covey T M, Cheong J K, Utomo V, Banerjee N, Zhang Z H, Jadulco R C, Concepcion G P, Bugni T S, Harper M K, Mihalek I, Jones C M, Ireland C M, Virshup D M (2010). WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J Cell Sci, 123(19): 3357–3367
Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice M M, Vincent J P (2008). Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol, 10(2): 170–177
Fu J, Ivy Yu H M, Maruyama T, Mirando A J, Hsu W (2011). Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn, 240(2): 365–371
Fu J, Jiang M, Mirando A J, Yu H M, Hsu W (2009). Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci USA, 106(44): 18598–18603
Galli L M, Barnes T L, Secrest S S, Kadowaki T, Burrus L W (2007). Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development, 134(18): 3339–3348
Gasnereau I, Herr P, Chia P Z, Basler K, Gleeson PA (2011). Identification of an endocytosis motif in an intracellular loop of Wntless, essential for its recycling and the control of Wnt signalling. J Biol Chem, 286: 43324–43333
Goodman R M, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana E P, Selva E M (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development, 133(24): 4901–4911
Harterink M, Port F, Lorenowicz M J, McGough I J, Silhankova M, Betist M C, van Weering J R, van Heesbeen R G, Middelkoop T C, Basler K, Cullen P J, Korswagen H C (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol, 13(8): 914–923
Herr P, Basler K (2011). Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol, 361(2): 392–402
Ikeya M, Lee S M, Johnson J E, McMahon A P, Takada S (1997). Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 389(6654): 966–970
Jin J, Kittanakom S, Wong V, Reyes B A, Van Bockstaele E J, Stagljar I, Berrettini W, Levenson R (2010). Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci, 11(1): 33
Komekado H, Yamamoto H, Chiba T, Kikuchi A (2007). Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells, 12(4): 521–534
Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139(2): 393–404
Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A (2007). Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J, 402(3): 515–523
Liu P, Wakamiya M, Shea M J, Albrecht U, Behringer R R, Bradley A (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet, 22(4): 361–365
Logan C Y, Nusse R (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20(1): 781–810
MacDonald B T, Tamai K, He X (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1): 9–26
McMahon A P, Bradley A (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62(6): 1073–1085
Pan C L, Baum P D, Gu M, Jorgensen EM, Clark S G, Garriga G (2008). C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell, 14(1): 132–139
Port F, Kuster M, Herr P, Furger E, Bänziger C, Hausmann G, Basler K (2008). Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol, 10(2): 178–185
Rojas R, van Vlijmen T, Mardones G A, Prabhu Y, Rojas A L, Mohammed S, Heck A J, Raposo G, van der Sluijs P, Bonifacino J S (2008). Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol, 183(3): 513–526
Silhankova M, Port F, Harterink M, Basler K, Korswagen H C (2010). Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J, 29(24): 4094–4105
Stefater J A 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter A C, Burr A R, Fan J, Ajima R, Molkentin J D, Williams B O, Wills-Karp M, Pollard J W, Yamaguchi T, Ferrara N, Gerhardt H, Lang R A (2011). Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature, 474(7352): 511–515
Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006). Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell, 11(6): 791–801
Tanaka K, Kitagawa Y, Kadowaki T (2002). Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J Biol Chem, 277(15): 12816–12823
Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T (2000). The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem, 267(13): 4300–4311
Tang X, Fan X, Lin X (2011). Regulation of Wnt Secretion and Distribution. Springer Science + Business Media, LLC 2011, 19–33
Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan N J, von Zastrow M (2011). SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol, 13(6): 717–721
Thomas K R, Capecchi M R (1990). Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 346(6287): 847–850
van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R (1993). Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J, 12(13): 5293–5302
Wassmer T, Attar N, Bujny M V, Oakley J, Traer C J, Cullen P J (2007). A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci, 120(1): 45–54
Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938): 448–452
Yang P T, Lorenowicz M J, Silhankova M, Coudreuse D Y, Betist M C, Korswagen H C (2008). Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell, 14(1): 140–147
Zhai L, Chaturvedi D, Cumberledge S (2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem, 279(32): 33220–33227