Wntless in Wnt secretion: molecular, cellular and genetic aspects

Soumyashree Das1, Shiyan Yu1, Ryotaro Sakamori1, Ewa Stypulkowski1, Nan Gao1
1Department of Biological Sciences, Rutgers University, Newark, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Attar N, Cullen P J (2010). The retromer complex. Adv Enzyme Regul, 50(1): 216–236

Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 125(3): 509–522

Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 125(3): 523–533

Belenkaya T Y, Wu Y, Tang X, Zhou B, Cheng L, Sharma Y V, Yan D, Selva E M, Lin X (2008). The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell, 14(1): 120–131

Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch D H, McMahon A P, Sommer L, Boussadia O, Kemler R (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Devel-opment, 128(8): 1253–1264

Carlton J, Bujny M, Peter B J, Oorschot V M, Rutherford A, Mellor H, Klumperman J, McMahon H T, Cullen P J (2004). Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol, 14(20): 1791–1800

Carlton J G, Bujny M V, Peter B J, Oorschot V M, Rutherford A, Arkell R S, Klumperman J, McMahon H T, Cullen P J (2005). Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci, 118(19): 4527–4539

Carpenter A C, Rao S, Wells J M, Campbell K, Lang R A (2010). Generation of mice with a conditional null allele for Wntless. Genesis, 48(9): 554–558

Ching W, Hang H C, Nusse R (2008). Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem, 283(25): 17092–17098

Clevers H (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3): 469–480

Coombs G S, Yu J, Canning C A, Veltri C A, Covey T M, Cheong J K, Utomo V, Banerjee N, Zhang Z H, Jadulco R C, Concepcion G P, Bugni T S, Harper M K, Mihalek I, Jones C M, Ireland C M, Virshup D M (2010). WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J Cell Sci, 123(19): 3357–3367

Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice M M, Vincent J P (2008). Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol, 10(2): 170–177

Fu J, Ivy Yu H M, Maruyama T, Mirando A J, Hsu W (2011). Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn, 240(2): 365–371

Fu J, Jiang M, Mirando A J, Yu H M, Hsu W (2009). Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci USA, 106(44): 18598–18603

Galli L M, Barnes T L, Secrest S S, Kadowaki T, Burrus L W (2007). Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development, 134(18): 3339–3348

Gasnereau I, Herr P, Chia P Z, Basler K, Gleeson PA (2011). Identification of an endocytosis motif in an intracellular loop of Wntless, essential for its recycling and the control of Wnt signalling. J Biol Chem, 286: 43324–43333

Goodman R M, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana E P, Selva E M (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development, 133(24): 4901–4911

Harterink M, Port F, Lorenowicz M J, McGough I J, Silhankova M, Betist M C, van Weering J R, van Heesbeen R G, Middelkoop T C, Basler K, Cullen P J, Korswagen H C (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol, 13(8): 914–923

Herr P, Basler K (2011). Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol, 361(2): 392–402

Ikeya M, Lee S M, Johnson J E, McMahon A P, Takada S (1997). Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 389(6654): 966–970

Jin J, Kittanakom S, Wong V, Reyes B A, Van Bockstaele E J, Stagljar I, Berrettini W, Levenson R (2010). Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci, 11(1): 33

Komekado H, Yamamoto H, Chiba T, Kikuchi A (2007). Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells, 12(4): 521–534

Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139(2): 393–404

Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A (2007). Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J, 402(3): 515–523

Liu P, Wakamiya M, Shea M J, Albrecht U, Behringer R R, Bradley A (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet, 22(4): 361–365

Logan C Y, Nusse R (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20(1): 781–810

MacDonald B T, Tamai K, He X (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1): 9–26

McMahon A P, Bradley A (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62(6): 1073–1085

Pan C L, Baum P D, Gu M, Jorgensen EM, Clark S G, Garriga G (2008). C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell, 14(1): 132–139

Port F, Kuster M, Herr P, Furger E, Bänziger C, Hausmann G, Basler K (2008). Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol, 10(2): 178–185

Rojas R, van Vlijmen T, Mardones G A, Prabhu Y, Rojas A L, Mohammed S, Heck A J, Raposo G, van der Sluijs P, Bonifacino J S (2008). Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol, 183(3): 513–526

Seaman M N (2005). Recycle your receptors with retromer. Trends Cell Biol, 15(2): 68–75

Silhankova M, Port F, Harterink M, Basler K, Korswagen H C (2010). Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J, 29(24): 4094–4105

Stefater J A 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter A C, Burr A R, Fan J, Ajima R, Molkentin J D, Williams B O, Wills-Karp M, Pollard J W, Yamaguchi T, Ferrara N, Gerhardt H, Lang R A (2011). Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature, 474(7352): 511–515

Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006). Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell, 11(6): 791–801

Tanaka K, Kitagawa Y, Kadowaki T (2002). Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J Biol Chem, 277(15): 12816–12823

Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T (2000). The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem, 267(13): 4300–4311

Tang X, Fan X, Lin X (2011). Regulation of Wnt Secretion and Distribution. Springer Science + Business Media, LLC 2011, 19–33

Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan N J, von Zastrow M (2011). SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol, 13(6): 717–721

Thomas K R, Capecchi M R (1990). Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 346(6287): 847–850

van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R (1993). Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J, 12(13): 5293–5302

Wassmer T, Attar N, Bujny M V, Oakley J, Traer C J, Cullen P J (2007). A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci, 120(1): 45–54

Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938): 448–452

Yang P T, Lorenowicz M J, Silhankova M, Coudreuse D Y, Betist M C, Korswagen H C (2008). Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell, 14(1): 140–147

Zhai L, Chaturvedi D, Cumberledge S (2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem, 279(32): 33220–33227

Zhang P, Wu Y, Belenkaya T Y, and Lin X (2011). SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res, 21(12):1677–1690