Wnt signaling establishes anteroposterior neuronal polarity and requires retromer inC. elegans
Tóm tắt
Secreted Wnt proteins influence neural connectivity by regulating axon guidance, dendritic morphogenesis and synapse formation. We report a new role for Wnt and Frizzled proteins in establishing the anteroposterior polarity of the mechanosensory neurons ALM and PLM in C. elegans. Disruption of Wnt signaling leads to a complete inversion of ALM and PLM polarity: the anterior process adopts the length, branching pattern and synaptic properties of the wild-type posterior process, and vice versa. Different but overlapping sets of Wnt proteins regulate neuronal polarity in different body regions. Wnts act directly on PLM via the Frizzled LIN-17. In addition, we show that they are needed for axon branching and anteriorly directed axon growth. We also find that the retromer, a conserved protein complex that mediates transcytosis and endosome-to-Golgi protein trafficking, plays a key role in Wnt signaling. Deletion mutations of retromer subunits cause ALM and PLM polarity, and other Wnt-related defects. We show that retromer protein VPS-35 is required in Wnt-expressing cells and propose that retromer activity is needed to generate a fully active Wnt signal.
Từ khóa
Tài liệu tham khảo
Brose, K. and Tessier-Lavigne, M. (2000). Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol.10, 95-102.
Charron, F. and Tessier-Lavigne, M. (2005). Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development132,2251-2262.
Clark, S. G. and Chiu, C. (2003). C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development130,3781-3794.
Collins, B. M., Skinner, C. F., Watson, P. J., Seaman, M. N. and Owen, D. J. (2005). Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat. Struct. Mol. Biol.12,594-602.
de Anda, F. C., Pollarolo, G., Da Silva, J. S., Camoletto, P. G., Feiguin, F. and Dotti, C. G. (2005). Centrosome localization determines neuronal polarity. Nature436,704-708.
Edgar, A. J. and Polak, J. M. (2000). Human homologues of yeast vacuolar protein sorting 29 and 35. Biochem. Biophys. Res. Commun.277,622-630.
Fradkin, L. G., Garriga, G., Salinas, P. C., Thomas, J. B., Yu,X. and Zou, Y. (2005). Wnt signaling in neural circuit development. J. Neurosci.25,10376-10378.
Haft, C. R., de la Luz Sierra, M., Bafford, R., Lesniak, M. A.,Barr, V. A. and Taylor, S. I. (2000). Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35, assembly into multimeric complexes. Mol. Biol. Cell11,4105-4116.
Harris, J., Honigberg, L., Robinson, N. and Kenyon, C.(1996). Neuronal cell migration in C. elegans:regulation of Hox gene expression and cell position. Development122,3117-3131.
Herman, M. (2001). C. elegans POP-1/TCF functions in a canonical Wnt pathway that controls cell migration and in a noncanonical Wnt pathway that controls cell polarity. Development128,581-590.
Herman, M. A. (2002). Control of cell polarity by noncanonical Wnt signaling in C. elegans.Semin. Cell Dev. Biol.13,233-241.
Herman, M. A. and Horvitz, H. R. (1994). The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development120,1035-1047.
Herman, M. A., Vassilieva, L. L., Horvitz, H. R., Shaw, J. E. and Herman, R. K. (1995). The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell83,101-110.
Hilliard, M. A. and Bargmann, C. I. (2006). Wnt signals and Frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev. Cell10,379-390.
Inoue, T., Oz, H. S., Wiland, D., Gharib, S., Deshpande, R.,Hill, R. J., Katz, W. S. and Sternberg, P. W. (2004). C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell118,795-806.
Kennedy, S., Wang, D. and Ruvkun, G. (2004). A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature427,645-649.
Korswagen, H. C. (2002). Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. BioEssays24,801-810.
Krylova, O., Herreros, J., Cleverley, K. E., Ehler, E.,Henriquez, J. P., Hughes, S. M. and Salinas, P. C. (2002). WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron35,1043-1056.
Liu, Y., Shi, J., Lu, C. C., Wang, Z. B., Lyuksyutova, A. I.,Song, X. and Zou, Y. (2005). Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat. Neurosci.8,1151-1159.
Logan, C. Y. and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol.20,781-810.
Lu, W., Yamamoto, V., Ortega, B. and Baltimore, D.(2004). Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell119,97-108.
Lyuksyutova, A. I., Lu, C. C., Milanesio, N., King, L. A., Guo,N., Wang, Y., Nathans, J., Tessier-Lavigne, M. and Zou, Y.(2003). Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science302,1984-1988.
Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. and Kenyon, C. (1999). A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development126,37-49.
Nonet, M. L. (1999). Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J. Neurosci. Methods89, 33-40.
Pan, C. L., Howell, J. E., Clark, S. G., Hilliard, M., Cordes,S., Bargmann, C. I. and Garriga, G. (2006). Multiple Wnts and Frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev. Cell10,367-377.
Panakova, D., Sprong, H., Marois, E., Thiele, C. and Eaton,S. (2005). Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature435, 58-65.
Paravicini, G., Horazdovsky, B. F. and Emr, S. D.(1992). Alternative pathways for the sorting of soluble vacuolar proteins in yeast: a vps35 null mutant missorts and secretes only a subset of vacuolar hydrolases. Mol. Biol. Cell3, 415-427.
Park, F. D., Tenlen, J. R. and Priess, J. R.(2004). C. elegans MOM-5/frizzled functions in MOM-2/Wnt-independent cell polarity and is localized asymmetrically prior to cell division. Curr. Biol.14,2252-2258.
Reddy, J. V. and Seaman, M. N. (2001). Vps26p,a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol. Biol. Cell12,3242-3256.
Rocheleau, C. E., Downs, W. D., Lin, R., Wittmann, C., Bei, Y.,Cha, Y. H., Ali, M., Priess, J. R. and Mello, C. C. (1997). Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell90,707-716.
Rolls, M. M., Hall, D. H., Victor, M., Stelzer, E. H. and Rapoport, T. A. (2002). Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol. Biol. Cell13,1778-1791.
Sawa, H., Lobel, L. and Horvitz, H. R. (1996). The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. Genes Dev.10,2189-2197.
Schlesinger, A., Shelton, C. A., Maloof, J. N., Meneghini, M. and Bowerman, B. (1999). Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev.13,2028-2038.
Seaman, M. N., Marcusson, E. G., Cereghino, J. L. and Emr, S. D. (1997). Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30,and VPS35 gene products. J. Cell Biol.137, 79-92.
Shackleford, G. M., Shivakumar, S., Shiue, L., Mason, J.,Kenyon, C. and Varmus, H. E. (1993). Two wnt genes in Caenorhabditis elegans. Oncogene8,1857-1864.
Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E. and Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol.22,1567-1572.
Simmer, F., Tijsterman, M., Parrish, S., Koushika, S. P., Nonet,M. L., Fire, A., Ahringer, J. and Plasterk, R. H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol.12,1317-1319.
Thorpe, C. J., Schlesinger, A., Carter, J. C. and Bowerman,B. (1997). Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell90,695-705.
Verges, M., Luton, F., Gruber, C., Tiemann, F., Reinders, L. G.,Huang, L., Burlingame, A. L., Haft, C. R. and Mostov, K. E.(2004). The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol.6, 763-769.
Wadsworth, W. G. (2002). Moving around in a worm: netrin UNC-6 and circumferential axon guidance in C. elegans. Trends Neurosci.25,423-429.
Whangbo, J. and Kenyon, C. (1999). A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol. Cell4,851-858.
Whangbo, J., Harris, J. and Kenyon, C. (2000). Multiple levels of regulation specify the polarity of an asymmetric cell division in C. elegans. Development127,4587-4598.
White, J. G., Southgate, E., Thomson, J. N. and Brenner, S.(1976). The structure of the ventral nerve cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci.275,327-348.
Willert, K., Brown, J. D., Danenberg, E., Duncan, A. W.,Weissman, I. L., Reya, T., Yates, J. R., 3rd and Nusse, R.(2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423,448-452.
Yoshikawa, S., McKinnon, R. D., Kokel, M. and Thomas, J. B.(2003). Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature422,583-588.
Yu, T. W. and Bargmann, C. I. (2001). Dynamic regulation of axon guidance. Nat. Neurosci.4,S1169-S1176.
Zhai, L., Chaturvedi, D. and Cumberledge, S.(2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem.279,33220-33227.
Zhang, P., Yu, L., Gao, J., Fu, Q., Dai, F., Zhao, Y., Zheng, L. and Zhao, S. (2000). Cloning and characterization of human VPS35 and mouse Vps35 and mapping of VPS35 to human chromosome 16q13-q21. Genomics70,253-257.
Zinovyeva, A. Y. and Forrester, W. C. (2005). The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Dev. Biol.285,447-461.