Wnt signaling and the regulation of bone mass
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aubin JE, Triffit JT: Mesenchymal stem cells and osteoblast differentiation. In Principles of Bone Biology. Edited by Bilezikian JP, Raisz LG, Rodan GA. San Diego, CA: Academic Press; 2002:59–82.
Suda T, Takahashi N, Udagawa N, et al.: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999, 20:345–357.
Simonet WS, Lacey DL, Dunstan CR, et al.: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89:309–319.
Deaton DN, Tavares FX: Design of cathepsin K inhibitors for osteoporosis. Curr Top Med Chem 2005, 5:1639–1675.
Zaidi M, Troen B, Moonga BS, Abe E: Cathepsin K, osteoclastic resorption, and osteoporosis therapy. J Bone Miner Res 2001, 16:1747–1749.
Zhao C, Irie N, Takada Y, et al.: Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 2006, 4:111–121.
Boyden LM, Mao J, Belsky J, et al.: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002, 346:1513–1521.
Gong Y, Slee RB, Fukai N, et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107:513–523.
Little RD, Carulli JP, Del Mastro RG, et al.: A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002, 70:11–19.
Staehling-Hampton K, Proll S, Paeper BW, et al.: A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12–q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 2002, 110:144–152.
Balemans W, Patel N, Ebeling M, et al.: Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 2002, 39:91–97.
Wehrli M, Dougan ST, Caldwell K, et al.: Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 2000, 407:527–530.
Jeon H, Meng W, Takagi J, et al.: Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Biol 2001, 8:499–504.
Zeng X, Tamai K, Doble B, et al.: A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 2005, 438:873–877.
Davidson G, Wu W, Shen J, et al.: Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 2005, 438:867–872.
Hay E, Faucheu C, Suc-Royer I, et al.: Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway. J Biol Chem 2005, 280:13616–13623.
Chen HJ, Lin CM, Lin CS, et al.: The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway. Genes Dev 2006, 20:1933–1945.
Mani A, Radhakrishnan J, Wang H, et al.: LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007, 315:1278–1282.
Kato M, Patel MS, Levasseur R, et al.: Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002, 157:303–314.
Van Wesenbeeck L, Cleiren E, Gram J, et al.: Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003, 72:763–771.
Kiel DP, Ferrari SL, Cupples LA, et al.: Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone 2007, 40:587–596.
Koller DL, Ichikawa S, Johnson ML, et al.: Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res 2005, 20:75–80.
Ferrari SL, Deutsch S, Antonarakis SE: Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Curr Opin Lipidol 2005, 16:207–214.
Hartikka H, Makitie O, Mannikko M, et al.: Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005, 20:783–789.
Urano T, Shiraki M, Ezura Y, et al.: Association of a single-nucleotide polymorphism in low-density lipoprotein receptor-related protein 5 gene with bone mineral density. J Bone Miner Metab 2004, 22:341–345.
Clement-Lacroix P, Ai M, Morvan F, et al.: Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 2005, 102:17406–17411.
Babij P, Zhao W, Small C, et al.: High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 2003, 18:960–974.
Bennett CN, Longo KA, Wright WS, et al.: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 2005, 102:3324–3329.
Bodine PV, Zhao W, Kharode YP, et al.: The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 2004, 18:1222–1237.
Glass DA 2nd, Bialek P, Ahn JD, et al.: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005, 8:751–764.
Holmen SL, Zylstra CR, Mukherjee A, et al.: Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 2005, 280:21162–21168.
Morvan F, Boulukos K, Clement-Lacroix P, et al.: Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006, 21:934–945.
Li J, Sarosi I, Cattley RC, et al.: Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 2006, 39:754–766.
Nakanishi T, Yamaai T, Asano M, et al.: Overexpression of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 decreases bone density in adult mice and induces dwarfism. Biochem Biophys Res Commun 2001, 281:678–681.
Cao J, Morony S, Warmington K, et al.: Transgenic overexpression of WIF-1, a secreted Wnt antagonist expressed in bone, causes decreased bone mineral density and increased susceptibility to bone fracture in mice: a role for WIF-1 in bone biology. J Bone Miner Res 2004, 19:S55.
Hill TP, Taketo MM, Birchmeier W, Hartmann C: Multiple roles of mesenchymal beta-catenin during murine limb patterning. Development 2006, 133:1219–1229.
Hill TP, Spater D, Taketo MM, et al.: Canonical Wnt/betacatenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005, 8:727–738.
Day TF, Guo X, Garrett-Beal L, Yang Y: Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005, 8:739–750.
Rawadi G, Vayssiere B, Dunn F, et al.: BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 2003, 18:1842–1853.
Kalajzic I, Staal A, Yang WP, et al.: Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem 2005, 280:24618–24626.
Roman-Roman S, Garcia T, Jackson A, et al.: Identification of genes regulated during osteoblastic differentiation by genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 2003, 32:474–482.
Vaes BL, Dechering KJ, van Someren EP, et al.: Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts. Bone 2005, 36:803–811.
Li X, Liu P, Liu W, et al.: Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005, 37:945–952.
Diarra D, Stolina M, Polzer K, et al.: Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007, 13:156–163.
Tian E, Zhan F, Walker R, et al.: The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003, 349:2483–2494.
Vestergaard P, Rejnmark L, Mosekilde L: Reduced relative risk of fractures among users of lithium. Calcif Tissue Int 2005, 77:1–8.
Kulkarni NH, Onyia JE, Zeng Q, et al.: Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 2006, 21:910–920.
Poole KE, van Bezooijen RL, Loveridge N, et al.: Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 2005, 19:1842–1844.
Ellies DL, Viviano B, McCarthy J, et al.: Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 2006, 21:1738–1749.
Semenov M, Tamai K, He X: SOST is a ligand for LRP5/ LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005, 280:26770–26775.
Semenov MV, He X: LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem 2006, 281:38276–38284.
Brunkow ME, Gardner JC, Van Ness J, et al.: Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001, 68:577–589.
Balemans W, Ebeling M, Patel N, et al.: Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001, 10:537–543.
Bellido T, Ali AA, Gubrij I, et al.: Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 2005, 146:4577–4583.
Robling AG, Bellido T, Turner CH: Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact 2006, 6:354.
Ominsky M, Warmington KS, Asuncion FJ, et al.: Sclerostin monoclonal antibody treatment increases bone strength in aged osteopenic ovariectomized rats [abstract]. J Bone Min Res 2006, 21:S44 (Abstract 1161).
Ominsky M, Stouch B, Doellgast G, et al.: Administration of sclerostin monoclonal antibodies to female Cynomologous monkeys results in increased bone formation, bone mineral density and bone strength [abstract]. J Bone Min Res 2006, 21:S44 (Abstract 1162).
Holmen SL, Robertson SA, Zylstra CR, Williams BO: Wnt-independent activation of beta-catenin mediated by a Dkk1-Fz5 fusion protein. Biochem Biophys Res Commun 2005, 328:533–539.
Bafico A, Liu G, Yaniv A, et al.: Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 2001, 3:683–686.
Brott BK, Sokol SY: Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol Cell Biol 2002, 22:6100–6110.
Mao B, Wu W, Li Y, et al.: LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 2001, 411:321–325.
Semenov MV, Tamai K, Brott BK, et al.: Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 2001, 11:951–961.
Li L, Mao J, Sun L, et al.: Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled. J Biol Chem 2002, 277:5977–5981.
Davidson G, Mao B, del Barco Barrantes I, Niehrs C: Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning. Development 2002, 129:5587–5596.
Mao B, Wu W, Davidson G, et al.: Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 2002, 417:664–667.
Mao B, Niehrs C: Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 2003, 302:179–183.
Wang FS, Ko JY, Lin CL, et al.: Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone 2007, 40:485–492.
Guise TA, Mohammad KS, Clines G, et al.: Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 2006, 12:6213s–6216s.
Hall CL, Bafico A, Dai J, et al.: Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 2005, 65:7554–7560.
Yaccoby S, Ling W, Zhan F, et al.: Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007, 109:2106–2111.