Wnt pathway antagonists, SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival

Journal of Applied Genetics - Tập 57 - Trang 189-197 - 2015
Aleksandra Majchrzak-Celińska1, Marta Słocińska1, Anna-Maria Barciszewska2, Stanisław Nowak2, Wanda Baer-Dubowska1
1Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
2Department and Clinic of Neurosurgery and Neurotraumatology, Poznan University of Medical Sciences, Poznań, Poland

Tóm tắt

The deregulation of Wnt signaling is observed in various cancers, including gliomas, and might be related to the methylation of the genes encoding antagonists of this signaling pathway. The aim of the study was to assess the methylation status of the promoter regions of six Wnt negative regulators and to determine their prognostic value in clinical samples of gliomas of different grades. The methylation of SFRP1, SFRP2, PPP2R2B, DKK1, SOX17, and DACH1 was analyzed in 64 glioma samples using methylation-specific polymerase chain reaction (MSP). The results were analyzed in correlation with clinicopathological data. Promoter methylation in at least one of the analyzed genes was found in 81.3 % of the tumors. All benign tumors [grade I according to the World Health Organization (WHO) classification] lacked the methylation of the studied genes, whereas grade II, III, and IV tumors were, in most cases, methylation-positive. The methylation index correlated with the patient’s age. The most frequently methylated genes were SFRP1 and SFRP2 (73.4 % and 46.9 %, respectively), followed by SOX17 (20.3 %) and PPP2R2B (10.9 %); DKK1 and DACH1 were basically unmethylated (1.6 %). SFRP1 methylation negatively correlated with patients’ survival time, and was significantly more frequent in older patients and those with higher grade tumors. Overall, the results of this study indicate that aberrant promoter methylation of Wnt pathway antagonists is common in gliomas, which may be the possible cause of up-regulation of this signaling pathway often observed in these tumors. Moreover, SFRP1 promoter methylation can be regarded as a potential indicator of glioma patients’ survival.

Tài liệu tham khảo

Caricasole A, Bakker A, Copani A, Nicoletti F, Gaviraghi G, Terstappen GC (2005) Two sides of the same coin: Wnt signaling in neurodegeneration and neuro-oncology. Biosci Rep 25:309–327 Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, Gaetano C (2013) Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci 14:17643–17663 Chen PC, Tsai MH, Yip SK, Jou YC, Ng CF, Chen Y, Wang X, Huang W, Tung CL, Chen GC, Huang MM, Tong JH, Song EJ, Chang DC, Hsu CD, To KF, Shen CH, Chan MW (2011) Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine. BMC Med Genomics 4:45. doi:10.1186/1755-8794-4-45 Chew LJ, Shen W, Ming X, Senatorov VV Jr, Chen HL, Cheng Y, Hong E, Knoblach S, Gallo V (2011) SRY-box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 39:13921–13935 Delic S, Lottmann N, Stelzl A, Liesenberg F, Wolter M, Götze S, Zapatka M, Shiio Y, Sabel MC, Felsberg J, Reifenberger G, Riemenschneider MJ (2014) MiR-328 promotes glioma cell invasion via SFRP1-dependent Wnt-signaling activation. Neuro Oncol 16:179–190 Ellinger J, Müller SC, Dietrich D (2015) Epigenetic biomarkers in the blood of patients with urological malignancies. Expert Rev Mol Diagn 15:505–516 Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19:150–158 Foltz G, Yoon JG, Lee H, Ma L, Tian Q, Hood L, Madan A (2010) Epigenetic regulation of wnt pathway antagonists in human glioblastoma multiforme. Genes Cancer 1:81–90 Gong A, Huang S (2012) FoxM1 and Wnt/β-catenin signaling in glioma stem cells. Cancer Res 72:5658–5662 Götze S, Wolter M, Reifenberger G, Müller O, Sievers S (2010) Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 126:2584–2593 Hendaoui I, Lavergne E, Lee HS, Hong SH, Kim HZ, Parent C, Heuzé-Vourc’h N, Clément B, Musso O (2012) Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8. PLoS One 7(1):e30601. doi:10.1371/journal.pone.0030601 Jia Y, Yang Y, Liu S, Herman JG, Lu F, Guo M (2010) SOX17 antagonizes WNT/β-catenin signaling pathway in hepatocellular carcinoma. Epigenetics 5:743–749 Kaur N, Chettiar S, Rathod S, Rath P, Muzumdar D, Shaikh ML, Shiras A (2013) Wnt3a mediated activation of Wnt/β-catenin signaling promotes tumor progression in glioblastoma. Mol Cell Neurosci 54:44–57 Kim SA, Kwak J, Nam HY, Chun SM, Lee BW, Lee HJ, Khang SK, Kim SW (2013) Promoter methylation of WNT inhibitory factor-1 and expression pattern of WNT/β-catenin pathway in human astrocytoma: pathologic and prognostic correlations. Mod Pathol 26:626–639 Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, Sciuscio D, Burger R, Domany E, Stupp R, Hegi ME (2011) The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro Oncol 13:736–747 Liu X, Wang L, Zhao S, Ji X, Luo Y, Ling F (2011) β-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastma cells. Med Oncol 28:608–614 Lu J, Zhang F, Zhao D, Hong L, Min J, Zhang L, Li F, Yan Y, Li H, Ma Y, Li Q (2008) ATRA-inhibited proliferation in glioma cells is associated with subcellular redistribution of beta-catenin via up-regulation of Axin. J Neurooncol 87:271–277 Majchrzak-Celińska A, Paluszczak J, Kleszcz R, Magiera M, Barciszewska AM, Nowak S, Baer-Dubowska W (2013) Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet 54:335–344 Majchrzak-Celińska A, Paluszczak J, Szalata M, Barciszewska AM, Nowak S, Kleszcz R, Sherba A, Baer-Dubowska W (2015a) The methylation of a panel of genes differentiates low-grade from high-grade gliomas. Tumour Biol 36:3831–3841. doi:10.1007/s13277-014-3025-3 Majchrzak-Celińska A, Paluszczak J, Szalata M, Barciszewska AM, Nowak S, Baer-Dubowska W (2015b) DNA methylation analysis of benign and atypical meningiomas: correlation between RUNX3 methylation and WHO grade. J Cancer Res Clin Oncol 141:1593–1601. doi:10.1007/s00432-015-1930-5 Muggerud AA, Rønneberg JA, Wärnberg F, Botling J, Busato F, Jovanovic J, Solvang H, Bukholm I, Børresen-Dale AL, Kristensen VN, Sørlie T, Tost J (2010) Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res 12:R3. doi:10.1186/bcr2466 Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16:896–913 Paluszczak J, Baer-Dubowska W (2006) Epigenetic diagnostics of cancer—the application of DNA methylation markers. J Appl Genet 47:365–375 Paluszczak J, Hemmerling D, Kostrzewska-Poczekaj M, Jarmuż-Szymczak M, Grenman R, Wierzbicka M, Baer-Dubowska W (2014) Frequent hypermethylation of WNT pathway genes in laryngeal squamous cell carcinomas. J Oral Pathol Med 43:652–657 Paluszczak J, Sarbak J, Kostrzewska-Poczekaj M, Kiwerska K, Jarmuż-Szymczak M, Grenman R, Mielcarek-Kuchta D, Baer-Dubowska W (2015) The negative regulators of Wnt pathway-DACH1, DKK1, and WIF1 are methylated in oral and oropharyngeal cancer and WIF1 methylation predicts shorter survival. Tumour Biol 36:2855–2861. doi:10.1007/s13277-014-2913-x Pannone G, Bufo P, Santoro A, Franco R, Aquino G, Longo F, Botti G, Serpico R, Cafarelli B, Abbruzzese A, Caraglia M, Papagerakis S, Lo Muzio L (2010) WNT pathway in oral cancer: epigenetic inactivation of WNT-inhibitors. Oncol Rep 24:1035–1041 Paul I, Bhattacharya S, Chatterjee A, Ghosh MK (2013) Current understanding on EGFR and Wnt/β-catenin signaling in glioma and their possible crosstalk. Genes Cancer 4:427–446 Rao TP, Kühl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806 Rossi M, Magnoni L, Miracco C, Mori E, Tosi P, Pirtoli L, Tini P, Oliveri G, Cosci E, Bakker A (2011) β-Catenin and Gli1 are prognostic markers in glioblastoma. Cancer Biol Ther 11:753–761 Schiefer L, Visweswaran M, Perumal V, Arfuso F, Groth D, Newsholme P, Warrier S, Dharmarajan A (2014) Epigenetic regulation of the secreted frizzled-related protein family in human glioblastoma multiforme. Cancer Gene Ther 21:297–303 Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC, Jonatan D, Zorn AM, Wells JM (2007) Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 27:7802–7815 Sohn J, Natale J, Chew LJ, Belachew S, Cheng Y, Aguirre A, Lytle J, Nait-Oumesmar B, Kerninon C, Kanai-Azuma M, Kanai Y, Gallo V (2006) Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. J Neurosci 26:9722–9735 Surana R, Sikka S, Cai W, Shin EM, Warrier SR, Tan HJ, Arfuso F, Fox SA, Dharmarajan AM, Kumar AP (2014) Secreted frizzled related proteins: Implications in cancers. Biochim Biophys Acta 1845:53–65 Tan J, Lee PL, Li Z, Jiang X, Lim YC, Hooi SC, Yu Q (2010) B55β-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 18:459–471 von Marschall Z, Fisher LW (2010) Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling. Biochem Biophys Res Commun 400:299–304 Voorham QJ, Janssen J, Tijssen M, Snellenberg S, Mongera S, van Grieken NC, Grabsch H, Kliment M, Rembacken BJ, Mulder CJ, van Engeland M, Meijer GA, Steenbergen RD, Carvalho B (2013) Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas. BMC Cancer 13:603. doi:10.1186/1471-2407-13-603 Watanabe A, Ogiwara H, Ehata S, Mukasa A, Ishikawa S, Maeda D, Ueki K, Ino Y, Todo T, Yamada Y, Fukayama M, Saito N, Miyazono K, Aburatani H (2011) Homozygously deleted gene DACH1 regulates tumor-initiating activity of glioma cells. Proc Natl Acad Sci U S A 108:12384–12389 Wu K, Yang Y, Wang C, Davoli MA, D’Amico M, Li A, Cveklova K, Kozmik Z, Lisanti MP, Russell RG, Cvekl A, Pestell RG (2003) DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem 278:51673–51684 Yan W, Wu K, Herman JG, Brock MV, Fuks F, Yang L, Zhu H, Li Y, Yang Y, Guo M (2013) Epigenetic regulation of DACH1, a novel Wnt signaling component in colorectal cancer. Epigenetics 8:1373–1383 Zhang LY, Ye J, Zhang F, Li FF, Li H, Gu Y, Liu F, Chen GS, Li Q (2009) Axin induces cell death and reduces cell proliferation in astrocytoma by activating the p53 pathway. Int J Oncol 35:25–32 Zhang K, Zhang J, Han L, Pu P, Kang C (2012) Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol 7:740–749 Zhou Y, Liu F, Xu Q, Wang X (2010) Analysis of the expression profile of Dickkopf-1 gene in human glioma and the association with tumor malignancy. J Exp Clin Cancer Res 29:138