Within and between-days repeatability and variability of plantar pressure measurement during walking in children, adults and older adults

Advances in Rheumatology - Tập 58 - Trang 1-7 - 2018
Pedro S. Franco1,2, Cristiane F. Moro1, Mariane M. Figueiredo1, Renato R. Azevedo1,2, Fernando G. Ceccon1,2, Felipe P. Carpes1,2
1Applied Neuromechanics Research Group, Federal University of Pampa,Uruguaiana, Uruguaiana, Brazil
2Graduated Program in Physical Education, Federal University of Santa Maria, Santa Maria, Brazil

Tóm tắt

Previous studies discussed the repeatability and variability in plantar pressure measurement, but a few considered different age groups. Here we determine within and between-days repeatability and variability of plantar pressure measurement during gait in participants from different age groups. Plantar pressure was recorded in children, young adults and older adults walking at preferred speed in four non-consecutive days within one week. Data from 10 steps from each foot in each day were analyzed considering the different regions of the foot. Mean and peak plantar pressure and data variability were compared between the steps, foot regions and days. To describe mean and peak pressure during gait in children and adults a single measurement can be enough, but elderly will requires more attention especially concerning peak values. Variability in mean pressure did not differ between age groups, but peak pressure variability differed across foot regions and age groups. One single observation can be used to describe plantar pressure during gait in children and adults. When the interest concerns older people, it might be pertinent to consider more than one day of assessment, especially when looking at peak pressure.

Tài liệu tham khảo

Gurney JK, Kersting UG, Rosenbaum D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait & posture. 2008;27:706–9. Franco PS, Silva CB, Rocha ES, Carpes FP. Variability and repeatability analysis of plantar pressure during gait in older people. Rev Bras Reumatol. 2015;55:427–33. Deepashini H, Omar B, Paungmali A, Amaramalar N, Ohnmar H, Leonard J. An insight into the plantar pressure distribution of the foot in clinical practice: narrative review. Polish Annals of Medicine. 2014;21:51–6. Cousins SD, Morrison SC, Drechsler WI. The reliability of plantar pressure assessment during barefoot level walking in children aged 7-11 years. J Foot Ankle Res. 2012;5 Zammit GV, Menz HB, Munteanu SE. Reliability of the TekScan MatScan(R) system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults. J Foot Ankle Res. 2010;3:11. Bus SA, de Lange A. A comparison of the 1-step, 2-step, and 3-step protocols for obtaining barefoot plantar pressure data in the diabetic neuropathic foot. Clin Biomech (Bristol, Avon). 2005;20:892–9. McPoil TG, Cornwall MW, Dupuis L, Cornwell M. Variability of plantar pressure data. A comparison of the two-step and midgait methods. J Am Podiatr Med Assoc. 1999;89:495–501. Hennig EM, Staats A, Rosenbaum D. Plantar pressure distribution patterns of young school children in comparison to adults. Foot & ankle international. 1994;15:35–40. Hennig EM, Rosenbaum D. Pressure distribution patterns under the feet of children in comparison with adults. Foot & ankle. 1991;11:306–11. Bosch K, Gerss J, Rosenbaum D. Preliminary normative values for foot loading parameters of the developing child. Gait & posture. 2007;26:238–47. Bosch K, Gerss J, Rosenbaum D. Development of healthy children's feet--nine-year results of a longitudinal investigation of plantar loading patterns. Gait & posture. 2010;32:564–71. Scott G, Menz HB, Newcombe L. Age-related differences in foot structure and function. Gait & posture. 2007;26:68–75. Menz HB, Zammit GV, Munteanu SE, Scott G. Plantarflexion strength of the toes: age and gender differences and evaluation of a clinical screening test. Foot & ankle international. 2006;27:1103–8. Bosch K, Nagel A, Weigend L, Rosenbaum D. From "first" to "last" steps in life--pressure patterns of three generations. Clin Biomech (Bristol, Avon). 2009;24:676–81. Burns J, Crosbie J, Hunt A, Ouvrier R. The effect of pes cavus on foot pain and plantar pressure. Clin Biomech (Bristol, Avon). 2005;20:877–82. Fernandez-Seguin LM, Diaz Mancha JA, Sanchez Rodriguez R, Escamilla Martinez E, Gomez Martin B, Ramos Ortega J. Comparison of plantar pressures and contact area between normal and cavus foot. Gait & posture. 2014;39:789–92. Shu L, Hua T, Wang YY, Li QA, Feng DD, Tao XM. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing Array. Ieee T Inf Technol B. 2010;14:767–75. Hughes J, Pratt L, Linge K, Clark P, Klenerman L. Reliability of pressure measurements: the EM ED F system. Clin Biomech (Bristol, Avon). 1991;6:14–8. Wong DW, Niu W, Wang Y, Zhang M. Finite element analysis of foot and ankle impact injury: risk evaluation of calcaneus and talus fracture. PLoS One. 2016;11:e0154435. Zwitser EW, Breederveld RS. Fractures of the fifth metatarsal; diagnosis and treatment. Injury. 2010;41:555–62. Stolze H, Kuhtz-Buschbeck JP, Mondwurf C, Johnk K, Friege L. Retest reliability of spatiotemporal gait parameters in children and adults. Gait & posture. 1998;7:125–30. Machado AS, Bombach GD, Duysens J, Carpes FP. Differences in foot sensitivity and plantar pressure between young adults and elderly. Arch Gerontol Geriatr. 2016;63:67–71. Guffey K, Regier M, Mancinelli C, Pergami P. Gait parameters associated with balance in healthy 2- to 4-year-old children. Gait & posture. 2016;43:165–9. Hsu CC, Tsai WC, Chen CP, et al. Effects of aging on the plantar soft tissue properties under the metatarsal heads at different impact velocities. Ultrasound Med Biol. 2005;31:1423–9. Kwan RL, Zheng YP, Cheing GL. The effect of aging on the biomechanical properties of plantar soft tissues. Clin Biomech. 2010;25:601–5.