Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum
Tài liệu tham khảo
Chen, 2017, Neural Recording and Modulation Technologies, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.93
Won, 2020, Emerging Modalities and Implantable Technologies for Neuromodulation, Cell, 181, 115, 10.1016/j.cell.2020.02.054
Cogan, 2008, Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 10, 275, 10.1146/annurev.bioeng.10.061807.160518
Luan, 2014, Neuromodulation: present and emerging methods, Front. Neuroeng., 7, 27, 10.3389/fneng.2014.00027
Lozano, 2019, Deep brain stimulation: current challenges and future directions, Nat. Rev. Neurol., 15, 148, 10.1038/s41582-018-0128-2
Salatino, 2017, Glial responses to implanted electrodes in the brain, Nat. Biomed. Eng., 1, 862, 10.1038/s41551-017-0154-1
Jiang, 2022, Shedding light on neurons: optical approaches for neuromodulation, Natl. Sci. Rev., 9, nwac007, 10.1093/nsr/nwac007
Fenno, 2011, The development and application of optogenetics, Annu. Rev. Neurosci., 34, 389, 10.1146/annurev-neuro-061010-113817
Tye, 2012, Optogenetic investigation of neural circuits underlying brain disease in animal models, Nat. Rev. Neurosci., 13, 251, 10.1038/nrn3171
Deisseroth, 2015, Optogenetics: 10 years of microbial opsins in neuroscience, Nat. Neurosci., 18, 1213, 10.1038/nn.4091
Bansal, 2023, Towards translational optogenetics, Nat. Biomed. Eng., 7, 349, 10.1038/s41551-021-00829-3
Gilbert, 2014, Controlling Brain Cells With Light: Ethical Considerations for Optogenetic Clinical Trials, AJOB Neurosci., 5, 3, 10.1080/21507740.2014.911213
Hong, 2017, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 10.1038/s41551-016-0010
Chen, 2021, How is flexible electronics advancing neuroscience research?, Biomaterials, 268, 10.1016/j.biomaterials.2020.120559
Lin, 2013, ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation, Nat. Neurosci., 16, 1499, 10.1038/nn.3502
Chen, 2018, Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics, Science, 359, 679, 10.1126/science.aaq1144
Wu, 2019, Sono-optogenetics facilitated by a circulation- delivered rechargeable light source for minimally invasive optogenetics, Proc. Natl. Acad. Sci. USA, 116, 26332, 10.1073/pnas.1914387116
Chen, 2021, Deep brain optogenetics without intracranial surgery, Nat. Biotechnol., 39, 161, 10.1038/s41587-020-0679-9
Yang, 2022, A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source, Sci. Adv., 8, 10.1126/sciadv.abo6743
Yang, 2022, Palette of Rechargeable Mechanoluminescent Fluids Produced by a Biomineral-Inspired Suppressed Dissolution Approach, J. Am. Chem. Soc., 144, 18406, 10.1021/jacs.2c06724
Wu, 2023, Systemically delivered, deep-tissue nanoscopic light sources, Electromagn. Waves, 177, 33, 10.2528/PIER22112703
Wang, 2023, Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics, J. Am. Chem. Soc., 145, 1097, 10.1021/jacs.2c10666
Yang, 2023, Principles and applications of sono-optogenetics, Adv. Drug Deliv. Rev., 194, 10.1016/j.addr.2023.114711
Acarón Ledesma, 2019, An atlas of nano-enabled neural interfaces, Nat. Nanotechnol., 14, 645, 10.1038/s41565-019-0487-x
DiFrancesco, 2020, Neuronal firing modulation by a membrane-targeted photoswitch, Nat. Nanotechnol., 15, 296, 10.1038/s41565-019-0632-6
Jerca, 2022, Advances and opportunities in the exciting world of azobenzenes, Nat. Rev. Chem, 6, 51, 10.1038/s41570-021-00334-w
Jiang, 2021, Neural Stimulation In Vitro and In Vivo by Photoacoustic Nanotransducers, Matter, 4, 654, 10.1016/j.matt.2020.11.019
Diao, 2015, Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm, Angew Chem. Int. Ed. Engl., 54, 14758, 10.1002/anie.201507473
Wu, 2022, Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window, Nat. Biomed. Eng., 6, 754, 10.1038/s41551-022-00862-w
Frangioni, 2003, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 7, 626, 10.1016/j.cbpa.2003.08.007
Welsher, 2009, A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nat. Nanotechnol., 4, 773, 10.1038/nnano.2009.294
Hong, 2015, Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy, Chem. Rev., 115, 10816, 10.1021/acs.chemrev.5b00008
Hong, 2012, Multifunctional in vivo vascular imaging using near-infrared II fluorescence, Nat. Med., 18, 1841, 10.1038/nm.2995
Hong, 2014, Through-skull fluorescence imaging of the brain in a new near-infrared window, Nat. Photonics, 8, 723, 10.1038/nphoton.2014.166
Ma, 2021, Deep learning for in vivo near-infrared imaging, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2021446118
Hansen, 2020, Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern, Nat. Nanotechnol., 15, 3, 10.1038/s41565-019-0613-9
Fadeel, 2020, Grouping all carbon nanotubes into a single substance category is scientifically unjustified, Nat. Nanotechnol., 15, 164, 10.1038/s41565-020-0654-0
Heller, 2020, Banning carbon nanotubes would be scientifically unjustified and damaging to innovation, Nat. Nanotechnol., 15, 164, 10.1038/s41565-020-0656-y
Wang, 2019, Light-sheet microscopy in the near-infrared II window, Nat. Methods, 16, 545, 10.1038/s41592-019-0398-7
Resch-Genger, 2008, Quantum dots versus organic dyes as fluorescent labels, Nat. Methods, 5, 763, 10.1038/nmeth.1248
Zhong, 2019, In vivo molecular imaging for immunotherapy using ultra- bright near-infrared-IIb rare-earth nanoparticles, Nat. Biotechnol., 37, 1322, 10.1038/s41587-019-0262-4
Nakatsuji, 2015, Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surface-Engineered Plasmonic Nanoparticles, Angew Chem. Int. Ed. Engl., 54, 11725, 10.1002/anie.201505534
Carvalho-de-Souza, 2015, Photosensitivity of neurons enabled by cell-targeted gold nanoparticles, Neuron, 86, 207, 10.1016/j.neuron.2015.02.033
Lyu, 2016, Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons, J. Am. Chem. Soc., 138, 9049, 10.1021/jacs.6b05192
Li, 2019, Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation, Chem. Soc. Rev., 48, 38, 10.1039/C8CS00001H
Wu, 2023, Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light, ACS Nano, 17, 7941, 10.1021/acsnano.2c12068
Wu, 2022, Protocol for wireless deep brain stimulation in freely behaving mice with infrared light, STAR Protoc., 4
Parameswaran, 2018, Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires, Nat. Nanotechnol., 13, 260, 10.1038/s41565-017-0041-7
Jiang, 2018, Rational design of silicon structures for optically controlled multiscale biointerfaces, Nat. Biomed. Eng., 2, 508, 10.1038/s41551-018-0230-1
Jiang, 2019, Nongenetic optical neuromodulation with silicon-based materials, Nat. Protoc., 14, 1339, 10.1038/s41596-019-0135-9
Prominski, 2022, Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues, Nat. Mater., 21, 647, 10.1038/s41563-022-01249-7
Huang, 2023, Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities, Nat. Biomed. Eng., 7, 486, 10.1038/s41551-022-00931-0
Bahmani Jalali, 2018, Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots, ACS Nano, 12, 8104, 10.1021/acsnano.8b02976
Han, 2020, Organic Photovoltaic Pseudocapacitors for Neurostimulation, ACS Appl. Mater. Interfaces, 12, 42997, 10.1021/acsami.0c11581
Ghezzi, 2013, A polymer optoelectronic interface restores light sensitivity in blind rat retinas, Nat. Photonics, 7, 400, 10.1038/nphoton.2013.34
Maya-Vetencourt, 2017, A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness, Nat. Mater., 16, 681, 10.1038/nmat4874
Rand, 2018, Direct Electrical Neurostimulation with Organic Pigment Photocapacitors, Adv. Mater., 30
Jakešová, 2019, Optoelectronic control of single cells using organic photocapacitors, Sci. Adv., 5, eaav5265, 10.1126/sciadv.aav5265
Maya-Vetencourt, 2020, Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy, Nat. Nanotechnol., 15, 698, 10.1038/s41565-020-0696-3
Silverå Ejneby, 2022, Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor, Nat. Biomed. Eng., 6, 741, 10.1038/s41551-021-00817-7
Kandel, 2013
Hodgkin, 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500, 10.1113/jphysiol.1952.sp004764
Fromherz, 1995, Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip, Phys. Rev. Lett., 75, 1670, 10.1103/PhysRevLett.75.1670
Fromherz, 2002, Electrical interfacing of nerve cells and semiconductor chips, ChemPhysChem, 3, 276, 10.1002/1439-7641(20020315)3:3<276::AID-CPHC276>3.0.CO;2-A
Schoen, 2007, The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor, Biophys. J., 92, 1096, 10.1529/biophysj.106.094763
Ghezzi, 2011, A hybrid bioorganic interface for neuronal photoactivation, Nat. Commun., 2, 166, 10.1038/ncomms1164
Li, 2022, Semitransparent organic photovoltaics for building-integrated photovoltaic applications, Nat. Rev. Mater., 8, 186, 10.1038/s41578-022-00514-0
Yang, 2021, Wireless multilateral devices for optogenetic studies of individual and social behaviors, Nat. Neurosci., 24, 1035, 10.1038/s41593-021-00849-x
Yuan, 2019, Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core, Joule, 3, 1140, 10.1016/j.joule.2019.01.004
Lee, 2018, Bandgap narrowing in non-fullerene acceptors: Single atom substitution leads to high optoelectronic response beyond 1000 nm, Adv. Energy Mater., 8, 10.1002/aenm.201801212
Liu, 2019, Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation, Nat. Biomed. Eng., 3, 58, 10.1038/s41551-018-0335-6
Lee, 2023, A low-power stretchable neuromorphic nerve with proprioceptive feedback, Nat. Biomed. Eng., 7, 511, 10.1038/s41551-022-00918-x
Zhou, 2023, 3D printable high-performance conducting polymer hydrogel for all- hydrogel bioelectronic interfaces, Nat. Mater., 22, 895, 10.1038/s41563-023-01569-2
Francia, 2022, Light-induced charge generation in polymeric nanoparticles restores vision in advanced- stage retinitis pigmentosa rats, Nat. Commun., 13, 3677, 10.1038/s41467-022-31368-3
Stride, 2019, Nucleation, mapping and control of cavitation for drug delivery, Nat. Rev. Phys., 1, 495, 10.1038/s42254-019-0074-y
Montgomery, 2015, Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice, Nat. Methods, 12, 969, 10.1038/nmeth.3536
Fan, 2019, Using the tube test to measure social hierarchy in mice, Nat. Protoc., 14, 819, 10.1038/s41596-018-0116-4
Won, 2023, Wireless and battery-free technologies for neuroengineering, Nat. Biomed. Eng., 7, 405, 10.1038/s41551-021-00683-3
2000, Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 microm. International Commission on Non-Ionizing Radiation Protection, Health Phys., 79, 431, 10.1097/00004032-200010000-00013
Cheng, 2022, Toward high-performance semitransparent organic photovoltaics with narrow-bandgap donors and non- fullerene acceptors, Adv. Energy Mater., 12, 10.1002/aenm.202102908