Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum

Device - Tập 1 - Trang 100113 - 2023
Han Cui1,2, Su Zhao1,2, Guosong Hong1,2
1Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
2Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA

Tài liệu tham khảo

Chen, 2017, Neural Recording and Modulation Technologies, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.93 Won, 2020, Emerging Modalities and Implantable Technologies for Neuromodulation, Cell, 181, 115, 10.1016/j.cell.2020.02.054 Cogan, 2008, Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 10, 275, 10.1146/annurev.bioeng.10.061807.160518 Luan, 2014, Neuromodulation: present and emerging methods, Front. Neuroeng., 7, 27, 10.3389/fneng.2014.00027 Lozano, 2019, Deep brain stimulation: current challenges and future directions, Nat. Rev. Neurol., 15, 148, 10.1038/s41582-018-0128-2 Salatino, 2017, Glial responses to implanted electrodes in the brain, Nat. Biomed. Eng., 1, 862, 10.1038/s41551-017-0154-1 Jiang, 2022, Shedding light on neurons: optical approaches for neuromodulation, Natl. Sci. Rev., 9, nwac007, 10.1093/nsr/nwac007 Fenno, 2011, The development and application of optogenetics, Annu. Rev. Neurosci., 34, 389, 10.1146/annurev-neuro-061010-113817 Tye, 2012, Optogenetic investigation of neural circuits underlying brain disease in animal models, Nat. Rev. Neurosci., 13, 251, 10.1038/nrn3171 Deisseroth, 2015, Optogenetics: 10 years of microbial opsins in neuroscience, Nat. Neurosci., 18, 1213, 10.1038/nn.4091 Bansal, 2023, Towards translational optogenetics, Nat. Biomed. Eng., 7, 349, 10.1038/s41551-021-00829-3 Gilbert, 2014, Controlling Brain Cells With Light: Ethical Considerations for Optogenetic Clinical Trials, AJOB Neurosci., 5, 3, 10.1080/21507740.2014.911213 Hong, 2017, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 10.1038/s41551-016-0010 Chen, 2021, How is flexible electronics advancing neuroscience research?, Biomaterials, 268, 10.1016/j.biomaterials.2020.120559 Lin, 2013, ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation, Nat. Neurosci., 16, 1499, 10.1038/nn.3502 Chen, 2018, Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics, Science, 359, 679, 10.1126/science.aaq1144 Wu, 2019, Sono-optogenetics facilitated by a circulation- delivered rechargeable light source for minimally invasive optogenetics, Proc. Natl. Acad. Sci. USA, 116, 26332, 10.1073/pnas.1914387116 Chen, 2021, Deep brain optogenetics without intracranial surgery, Nat. Biotechnol., 39, 161, 10.1038/s41587-020-0679-9 Yang, 2022, A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source, Sci. Adv., 8, 10.1126/sciadv.abo6743 Yang, 2022, Palette of Rechargeable Mechanoluminescent Fluids Produced by a Biomineral-Inspired Suppressed Dissolution Approach, J. Am. Chem. Soc., 144, 18406, 10.1021/jacs.2c06724 Wu, 2023, Systemically delivered, deep-tissue nanoscopic light sources, Electromagn. Waves, 177, 33, 10.2528/PIER22112703 Wang, 2023, Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics, J. Am. Chem. Soc., 145, 1097, 10.1021/jacs.2c10666 Yang, 2023, Principles and applications of sono-optogenetics, Adv. Drug Deliv. Rev., 194, 10.1016/j.addr.2023.114711 Acarón Ledesma, 2019, An atlas of nano-enabled neural interfaces, Nat. Nanotechnol., 14, 645, 10.1038/s41565-019-0487-x DiFrancesco, 2020, Neuronal firing modulation by a membrane-targeted photoswitch, Nat. Nanotechnol., 15, 296, 10.1038/s41565-019-0632-6 Jerca, 2022, Advances and opportunities in the exciting world of azobenzenes, Nat. Rev. Chem, 6, 51, 10.1038/s41570-021-00334-w Jiang, 2021, Neural Stimulation In Vitro and In Vivo by Photoacoustic Nanotransducers, Matter, 4, 654, 10.1016/j.matt.2020.11.019 Diao, 2015, Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm, Angew Chem. Int. Ed. Engl., 54, 14758, 10.1002/anie.201507473 Wu, 2022, Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window, Nat. Biomed. Eng., 6, 754, 10.1038/s41551-022-00862-w Frangioni, 2003, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 7, 626, 10.1016/j.cbpa.2003.08.007 Welsher, 2009, A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nat. Nanotechnol., 4, 773, 10.1038/nnano.2009.294 Hong, 2015, Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy, Chem. Rev., 115, 10816, 10.1021/acs.chemrev.5b00008 Hong, 2012, Multifunctional in vivo vascular imaging using near-infrared II fluorescence, Nat. Med., 18, 1841, 10.1038/nm.2995 Hong, 2014, Through-skull fluorescence imaging of the brain in a new near-infrared window, Nat. Photonics, 8, 723, 10.1038/nphoton.2014.166 Ma, 2021, Deep learning for in vivo near-infrared imaging, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2021446118 Hansen, 2020, Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern, Nat. Nanotechnol., 15, 3, 10.1038/s41565-019-0613-9 Fadeel, 2020, Grouping all carbon nanotubes into a single substance category is scientifically unjustified, Nat. Nanotechnol., 15, 164, 10.1038/s41565-020-0654-0 Heller, 2020, Banning carbon nanotubes would be scientifically unjustified and damaging to innovation, Nat. Nanotechnol., 15, 164, 10.1038/s41565-020-0656-y Wang, 2019, Light-sheet microscopy in the near-infrared II window, Nat. Methods, 16, 545, 10.1038/s41592-019-0398-7 Resch-Genger, 2008, Quantum dots versus organic dyes as fluorescent labels, Nat. Methods, 5, 763, 10.1038/nmeth.1248 Zhong, 2019, In vivo molecular imaging for immunotherapy using ultra- bright near-infrared-IIb rare-earth nanoparticles, Nat. Biotechnol., 37, 1322, 10.1038/s41587-019-0262-4 Nakatsuji, 2015, Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surface-Engineered Plasmonic Nanoparticles, Angew Chem. Int. Ed. Engl., 54, 11725, 10.1002/anie.201505534 Carvalho-de-Souza, 2015, Photosensitivity of neurons enabled by cell-targeted gold nanoparticles, Neuron, 86, 207, 10.1016/j.neuron.2015.02.033 Lyu, 2016, Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons, J. Am. Chem. Soc., 138, 9049, 10.1021/jacs.6b05192 Li, 2019, Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation, Chem. Soc. Rev., 48, 38, 10.1039/C8CS00001H Wu, 2023, Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light, ACS Nano, 17, 7941, 10.1021/acsnano.2c12068 Wu, 2022, Protocol for wireless deep brain stimulation in freely behaving mice with infrared light, STAR Protoc., 4 Parameswaran, 2018, Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires, Nat. Nanotechnol., 13, 260, 10.1038/s41565-017-0041-7 Jiang, 2018, Rational design of silicon structures for optically controlled multiscale biointerfaces, Nat. Biomed. Eng., 2, 508, 10.1038/s41551-018-0230-1 Jiang, 2019, Nongenetic optical neuromodulation with silicon-based materials, Nat. Protoc., 14, 1339, 10.1038/s41596-019-0135-9 Prominski, 2022, Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues, Nat. Mater., 21, 647, 10.1038/s41563-022-01249-7 Huang, 2023, Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities, Nat. Biomed. Eng., 7, 486, 10.1038/s41551-022-00931-0 Bahmani Jalali, 2018, Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots, ACS Nano, 12, 8104, 10.1021/acsnano.8b02976 Han, 2020, Organic Photovoltaic Pseudocapacitors for Neurostimulation, ACS Appl. Mater. Interfaces, 12, 42997, 10.1021/acsami.0c11581 Ghezzi, 2013, A polymer optoelectronic interface restores light sensitivity in blind rat retinas, Nat. Photonics, 7, 400, 10.1038/nphoton.2013.34 Maya-Vetencourt, 2017, A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness, Nat. Mater., 16, 681, 10.1038/nmat4874 Rand, 2018, Direct Electrical Neurostimulation with Organic Pigment Photocapacitors, Adv. Mater., 30 Jakešová, 2019, Optoelectronic control of single cells using organic photocapacitors, Sci. Adv., 5, eaav5265, 10.1126/sciadv.aav5265 Maya-Vetencourt, 2020, Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy, Nat. Nanotechnol., 15, 698, 10.1038/s41565-020-0696-3 Silverå Ejneby, 2022, Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor, Nat. Biomed. Eng., 6, 741, 10.1038/s41551-021-00817-7 Kandel, 2013 Hodgkin, 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500, 10.1113/jphysiol.1952.sp004764 Fromherz, 1995, Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip, Phys. Rev. Lett., 75, 1670, 10.1103/PhysRevLett.75.1670 Fromherz, 2002, Electrical interfacing of nerve cells and semiconductor chips, ChemPhysChem, 3, 276, 10.1002/1439-7641(20020315)3:3<276::AID-CPHC276>3.0.CO;2-A Schoen, 2007, The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor, Biophys. J., 92, 1096, 10.1529/biophysj.106.094763 Ghezzi, 2011, A hybrid bioorganic interface for neuronal photoactivation, Nat. Commun., 2, 166, 10.1038/ncomms1164 Li, 2022, Semitransparent organic photovoltaics for building-integrated photovoltaic applications, Nat. Rev. Mater., 8, 186, 10.1038/s41578-022-00514-0 Yang, 2021, Wireless multilateral devices for optogenetic studies of individual and social behaviors, Nat. Neurosci., 24, 1035, 10.1038/s41593-021-00849-x Yuan, 2019, Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core, Joule, 3, 1140, 10.1016/j.joule.2019.01.004 Lee, 2018, Bandgap narrowing in non-fullerene acceptors: Single atom substitution leads to high optoelectronic response beyond 1000 nm, Adv. Energy Mater., 8, 10.1002/aenm.201801212 Liu, 2019, Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation, Nat. Biomed. Eng., 3, 58, 10.1038/s41551-018-0335-6 Lee, 2023, A low-power stretchable neuromorphic nerve with proprioceptive feedback, Nat. Biomed. Eng., 7, 511, 10.1038/s41551-022-00918-x Zhou, 2023, 3D printable high-performance conducting polymer hydrogel for all- hydrogel bioelectronic interfaces, Nat. Mater., 22, 895, 10.1038/s41563-023-01569-2 Francia, 2022, Light-induced charge generation in polymeric nanoparticles restores vision in advanced- stage retinitis pigmentosa rats, Nat. Commun., 13, 3677, 10.1038/s41467-022-31368-3 Stride, 2019, Nucleation, mapping and control of cavitation for drug delivery, Nat. Rev. Phys., 1, 495, 10.1038/s42254-019-0074-y Montgomery, 2015, Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice, Nat. Methods, 12, 969, 10.1038/nmeth.3536 Fan, 2019, Using the tube test to measure social hierarchy in mice, Nat. Protoc., 14, 819, 10.1038/s41596-018-0116-4 Won, 2023, Wireless and battery-free technologies for neuroengineering, Nat. Biomed. Eng., 7, 405, 10.1038/s41551-021-00683-3 2000, Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 microm. International Commission on Non-Ionizing Radiation Protection, Health Phys., 79, 431, 10.1097/00004032-200010000-00013 Cheng, 2022, Toward high-performance semitransparent organic photovoltaics with narrow-bandgap donors and non- fullerene acceptors, Adv. Energy Mater., 12, 10.1002/aenm.202102908