Wind turbines new criteria optimal site matching under new capacity factor probabilistic approaches

O.A. Omar1, Hamdy M. Ahmed2, Reda A. Elbarkouky3
1Physics and Engineering Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt
2Higher Institute of Engineering, El-Shorouk Academy, P.O. 3 El-Shorouk City, Cairo, Egypt
3Egyptian Chinese University, Cairo, 11725, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Global Wind Energy Council (GWEC).: Global wind report 2019 [Online]. https://gwec.net/global-wind-report-2019. Accessed 10 June 2020

Khaloie, H., Mollahassani-Pour, M., Moghaddam, A.A.: Optimal behavior of a hybrid power producer in day-ahead and intraday markets: a bi-objective CVaR-based approach. IEEE Trans. Sustain. Energy 12(2), 931–943 (2021). https://doi.org/10.1109/TSTE.2020.3026066

Khaloie, H., Moghaddam, A.A., Hatziargyriou, N., Contreras, J.: Risk-constrained self-scheduling of a hybrid power plant considering interval-based intraday demand response exchange market prices. J. Clean. Prod. 282, 125344 (2021). https://doi.org/10.1016/j.jclepro.2020.125344

Bidaoui, H., El Abbassi, I., El Bouardi, A., Darcherif, A.: Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities Northern Morocco. Proc. Manuf. 32, 786–793 (2019). https://doi.org/10.1016/j.promfg.2019.02.286

Mazzeo, D., Oliveti, G., Labonia, E.: Estimation of wind speed probability density function using a mixture of two truncated normal distributions. Renew. Energy 115, 1260–1280 (2018). https://doi.org/10.1016/j.renene.2017.09.043

Khalfallah, M.G., Koliub, A.M.: Suggestions for improving wind turbines power curves. Desalination 209(1–3), 221–229 (2007). https://doi.org/10.1016/j.desal.2007.04.031

Albadi, M.H., El-Saadany, E.F.: Wind turbines capacity factor modeling—a novel approach. IEEE Trans. Power Syst. 24(3), 1637–1638 (2009). https://doi.org/10.1109/TPWRS.2009.2023274

Jangamshetti, S.H., Rau, V.G.: Site matching of wind turbine generators: a case study. IEEE Trans. Energy Convers. 14, 1537–1543 (1999). https://doi.org/10.1109/60.815102

Diyoke, C.: A new approximate capacity factor method for matching wind turbines to a site: case study of Humber region, UK. Int J Energy Environ Eng 10, 451–462 (2019). https://doi.org/10.1007/s40095-019-00320-5

Lydia, M., Selvakumar, A.I., Kumar, S.S., Kumar, G.E.P.: Advanced algorithms for wind turbine power curve modelling. IEEE Trans. Sustain. Energy 4(3), 827–835 (2013). https://doi.org/10.1109/TSTE.2013.2247641

Ouarda, T.B.M.J., Charron, C.: On the mixture of wind speed distribution in a Nordic region. Energy Convers. Manage. 174, 33–44 (2018). https://doi.org/10.1016/j.enconman.2018.08.007

Mazzeo, D., Oliveti, G., Marsico, A.: A correction to the unimodal and bimodal truncated normal distributions for a more accurate representation of extreme and calm wind speeds. Int. J. Energy Res. 43, 7908–7941 (2019). https://doi.org/10.1002/er.4735

Jung, C., Schindler, D.: Sensitivity analysis of the system of wind speed distributions. Energy Convers. Manag. 177, 376–384 (2018). https://doi.org/10.1016/j.enconman.2018.09.078

Ali, S., Lee, S.-M., Jang, C.-M.: Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island–Incheon South Korea. Renew. Energy 123, 652–663 (2018). https://doi.org/10.1016/j.renene.2018.02.087

Aukitino, T., Khan, M.G.M., Ahmed, M.R.: Wind energy resource assessment for Kiribati with a comparison of different methods of determining Weibull parameters. Energy Convers. Manag. 151, 641–660 (2017). https://doi.org/10.1016/j.enconman.2017.09.027

Bokde, N., Feijóo, A., Villanueva, D.: Wind turbine power curves based on the weibull cumulative distribution function. Appl. Sci. 8, 1757 (2018). https://doi.org/10.3390/app8101757

Omar, O.A.M., Ahmed, H.M., Elbarkouky, R.A.: Commercial wind turbines modeling using single and composite cumulative probability density functions. Int. J. Electr. Comput. Eng. 11(1), 47–56 (2021). https://doi.org/10.11591/ijece.v11i1.pp47-56

Carrillo, C., Montaño, A.F.O., Cidrás, J., Díaz-Dorado, E.D.: Review of power curve modelling for wind turbines. Renew. Sustain. Energy Rev. 21, 572–581 (2013). https://doi.org/10.1016/j.rser.2013.01.012

Staffell, I., Pfenninger, S.: Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114, 1224–1239 (2016). https://doi.org/10.1016/j.energy.2016.08.068

Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al.: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24(14), 3624–3648 (2011). https://doi.org/10.1175/JCLI-D-11-00015.1

Molod, A., Takacs, L., Suarez, M., Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8(5), 1339–1356 (2015). https://doi.org/10.5194/gmd-8-1339-2015

Lileo, S., Petrik, O.: Investigation on the use of NCEP/NCAR, MERRA and NCEP/ CFSR reanalysis data in wind resource analysis. In Wind Energy Conf. Exhib (EWEC), pp. 181–185 (2011)

Gualtieri, G.: Improving investigation of wind turbine optimal site matching through the self-organizing maps. Energy Convers. Manag. 143, 295–311 (2017). https://doi.org/10.1016/j.enconman.2017.04.017

El-Shimy, M.: Wind energy conversion systems: reliability prospective. Encycl. Energy Eng. Technol. 2, 2184–2206 (2014)

Aghbalou, N., Charki, A., Elazzouzi, S.R., Reklaoui, K.: A probabilistic assessment approach for wind turbine-site matching. Int. J. Electr. Power Energy Syst. 103, 497–510 (2018). https://doi.org/10.1016/j.ijepes.2018.06.018

Sedaghat, A., Alkhatib, F., Eilaghi, A., Sabati, M., Borvayeh, L., Mostafaeipour, A.: A new strategy for wind turbine selection using optimization based on rated wind speed. Energy Proc. 160, 582–589 (2019). https://doi.org/10.1016/j.egypro.2019.02.209

Sedaghat, A., Mostafaeipour, A., Rezaei, M., Jahangiri, M., Mehrabi, A.: A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production. Int. J. Hydrogen Energy 45(32), 15888–15903 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.028

Azad, A.K., Rasul, M.G., Yusaf, T.: Statistical diagnosis of the best Weibull methods for wind power assessment for agricultural applications. Energies 7, 3056–3085 (2014). https://doi.org/10.3390/en7053056

Saeed, M.K., Salam, A., Rehman, A.U., Saeed, M.A.: Comparison of six different methods of Weibull distribution for wind power assessment: a case study for a site in the Northern region of Pakistan. Sustain. Energy Technol. Assess. 36, 100541 (2019)

Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006). https://doi.org/10.1016/j.ecoinf.2006.07.003

Albadi, M.H., El-Saadany, E.F.: Optimum turbine-site matching. Energy 35, 3593–3602 (2010). https://doi.org/10.1016/j.energy.2010.04.049

Johnson, G.L.: Wind energy systems. Prentice Hall, New York (2001)

Tao, S., Xu, Q., Feijóo, A., Kuenzel, S., Bokde, N.: Integrated wind farm power curve and power curve distribution function considering the wake effect and terrain gradient. Energies 12(13), 2482 (2019). https://doi.org/10.3390/en12132482

Dong, X., Li, J., Gao, D., Zheng, K.: Wind speed modeling for cascade clusters of wind turbines part 1: the cascade clusters of wind turbines. Energy 205, 118097 (2020). https://doi.org/10.1016/j.energy.2020.118097

Mortensen, N.G., Hansen, J.C., Badger, J., Jørgensen, B.H., Hasager, C.B., Paulsen, U.S., Hansen, O.F., Enevoldsen, K., Youssef, L.G., Said, U.S., Moussa, A.A.E.-S., Mahmoud, M.A., Yousef, A.E.S., Awad, A.M., Ahmed, M.A.-E.R., Sayed, M.A.M., Korany, M.H., Tarad, M.A.-E.B.: Wind atlas for Egypt: measurements, micro-, and mesoscale modeling. Eur. Wind Energy Conf. Exhib. (EWEC) 1, 136–145 (2006)